Abstract:
The embodiments of the present application provide a method and apparatus for modulation recognition of signals based on cyclic residual network, the method comprises: obtaining a signal matrix of a to-be-recognized signal, and extracting real part information and imaginary part information of the signal matrix; generating, according to extracted real part information and imaginary part information, a real-and-imaginary-part feature matrix of the to-be-recognized signal; converting, according to a preset matrix conversion method, the real-and-imaginary-part feature matrix into an amplitude-and-phase feature matrix; and inputting the amplitude-and-phase feature matrix into a pre-trained cyclic residual network to obtain a modulation mode corresponding to the to-be-recognized signal. In the embodiments of the present application, the processing of the to-be-recognized signal is simple and easy to operate, in which neither complex algorithms nor manual processing is required, the flexibility of recognition is high, and the result of modulation recognition of the to-be-recognized signal can be accurately obtained.
Abstract:
The present invention relates to the technical field of wireless communication, and discloses a method for frequency reuse based on cellular network. The method comprises the following steps: dividing the whole cellular network into a plurality of different cell clusters, wherein each cell cluster comprises three cells, every two of them being adjacent to each other; for each cell in a cell cluster, dividing the cell into a central area and an edge area according to the coverage of the cell; dividing the whole available frequency band of the network according to the user distribution and service distribution in the cell cluster; allocating divided frequency bands to the central area and the edge area in the cell cluster respectively according to preset rule; and applying the method for frequency reuse to other cell clusters, thus achieving the frequency reuse of the whole network. With the method, the average spectrum frequency efficiency of the cellular network can be improved, and interference among cells can be effectively suppressed.
Abstract:
Provided are a wireless protocol stack framework and a communication method based on a wireless protocol framework. The wireless protocol stack framework includes a sending end and a receiving end. The sending end includes a first channel maintenance module and a first data processing module. The receiving end includes a second data processing module and a second channel maintenance module.
Abstract:
Disclosed is a low-complexity linear equalization method for an Orthogonal Time Frequency Space (OTFS) system. The method may include: receiving a time domain signal passing through a linear time-varying (LTV) channel; sampling the time domain signal to obtain a sampled signal; demodulating the sampled signal to obtain a demodulated signal; performing a Symplectic Finite Fourier Transform (SFFT) on the demodulated signal to obtain a sampled delay-Doppler domain signal; determining an effective channel matrix in a delay-Doppler domain under a restriction of a rectangular window according to a time domain channel matrix; determining a linear equalization matrix according to the effective channel matrix; and equalizing the sampled delay-Doppler domain signal in a low-complexity way according to the linear equalization matrix. The disclosure also discloses a linear equalization device of an OTFS system for realizing the linear equalization method and a computer-readable storage medium.
Abstract:
The embodiments of the present application provide a radar-sensing detection method and device based on radar-sensing communication integration. Said method comprises: when being applied to a sending end, determining a position of a receiving end, then sending a beam control signal to the receiving end through a preset beam control request channel, receiving a beam control response signal sent by the receiving end, and sending a first detection result signal to the receiving end in a preset reservation channel. The embodiments of the present application can expand the detection range of an autonomous vehicle.
Abstract:
The embodiments of the present application provide a method and apparatus for modulation recognition of signals based on cyclic residual network, the method comprises: obtaining a signal matrix of a to-be-recognized signal, and extracting real part information and imaginary part information of the signal matrix; generating, according to extracted real part information and imaginary part information, a real-and-imaginary-part feature matrix of the to-be-recognized signal; converting, according to a preset matrix conversion method, the real-and-imaginary-part feature matrix into an amplitude-and-phase feature matrix; and inputting the amplitude-and-phase feature matrix into a pre-trained cyclic residual network to obtain a modulation mode corresponding to the to-be-recognized signal. In the embodiments of the present application, the processing of the to-be-recognized signal is simple and easy to operate, in which neither complex algorithms nor manual processing is required, the flexibility of recognition is high, and the result of modulation recognition of the to-be-recognized signal can be accurately obtained.
Abstract:
The invention relates to the technical field of wireless communication, and provides a method for joint optimization of schedule and resource allocation based on a genetic algorithm, which is applied in a CoMP communication system. The method includes steps of: S1, encoding chromosome; S2, initializing setting; S3, computing fitness value; S4, determining whether the optimal solution is better than an elite: if yes, updating the elite and executing S5, and if no, turning to S5; S5, determining whether a predetermined generation of population has been generated or not, if no, executing S6, otherwise, turning to S8; S6, participating reproduction process to generate two offspring chromosome individuals; S7, determining whether a predetermined number of offspring chromosome individuals have been generated, if yes, turning to S3 to compute again; otherwise keeping on reproduction; S8, performing schedule and resource allocation according to a solution corresponding to the elite. Under the condition of satisfying schedule limitation and power limitation, the method can, by uniting schedule and resource allocation, efficiently optimize system performance with less computing complexity.
Abstract:
Disclosed is an arithmetic encoding method based on a semantic source, which is applied to an encoder. In this method, a preset encoding interval of the semantic source and a syntax symbol sequence containing syntax symbols are obtained. For each syntax symbol of the syntax symbols, a target synonymous subset of the syntax symbol is determined from preset synonymous subsets of the syntax symbol. The target synonymous subset of the syntax symbol is encoded according to the preset encoding interval through an arithmetic encoding algorithm to obtain an encoded result sequence corresponding to the syntax symbol sequence. After obtaining a sequence length of the syntax symbol sequence, the sequence length and the encoded result sequence are sent to a decoder for decoding.
Abstract:
Provided are a radar communication integrated cooperative detection method and apparatus based on beam power distribution. The method comprises: determining a farthest detection distance and a detection volume of a single radar in a radar communication integrated system during transmitting of a detection beam when the radar has a preset transmit power; determining a communication success probability of each pair of radars during transmitting communication beams; determining a detection area volume of each pair of radars under different power distribution coefficients based on the farthest detection distance, the detection volume, a different power distribution coefficient of the single radar, and the communication success probability of each pair of radars; determining a power distribution coefficient corresponding to a largest detection area volume from different detection area volumes as a current power distribution coefficient; and determining total detection volume of the radar communication integrated system based on the detection area volume of each pair of radars and the current power distribution coefficient.
Abstract:
A method of route construction of an unmanned aerial vehicle (UAV) network includes: obtaining transmission information of the UAV network; determining a relay set from the UAV network based on the transmission information; wherein, the relay set includes at least one UAV; determining environment state parameters according to the transmission information and the information of the relay set; inputting the environment state parameters into a Deep Q-Learning network (DQN) to obtain an accumulated reward corresponding to each UAV; and selecting a UAV with the largest accumulated reward as a target UAV. This disclosure also discloses a UAV and computer readable storage medium that can be used to construct routes for a UAV network.