Abstract:
Methods of obtaining a measure of blood flow using a Fourier domain optical coherence tomography (FDOCT) system is provided. The method includes obtaining a first optical coherence tomography (OCT) survey scan of a retina of a subject using an OCT scan beam and obtaining a second OCT scan of the retina. The second OCT scan is within an area defined by the obtained first OCT scan and includes a region of retinal blood vessels emerging from and returning to an Optic Nerve Head (ONH) of the retina. An optical phase change is determined from the obtained second OCT scan, the optical phase change being associated with blood flow in a retinal blood vessel in the region of the second OCT scan. An angle of the retinal blood vessel associated with the optical phase change is determined, the angle being measured relative to a direction of transmission of the OCT scan beam. A quantitative measure of vessel blood flow is computed using the optical phase change and the vessel angle relative to the direction of the OCT scan beam.
Abstract:
Optical coherence tomography systems for imaging a whole eye are provided including a sample arm including focal optics that are configured to rapidly switch between at least two scanning modes in less than about 1.0 second.
Abstract:
OCT imaging systems are provided for imaging a spherical-type eye including a source having an associated source arm path and a reference arm having an associated reference arm path coupled to the source path. The reference arm path has an associated reference arm path length. A sample is also provided having an associated sample arm path coupled to the source arm and reference arm paths. A lens having a focal power optimized for a diameter of the spherical-type eye is provided along with a reference arm path length adjustment module coupled to the reference arm. The reference arm path length adjustment module is configured to automatically adjust the reference arm path length such that the reference arm path length is based on an eye diameter of the subject.
Abstract:
OCT imaging systems are provided for imaging a spherical-type eye including a source having an associated source arm path and a reference arm having an associated reference arm path coupled to the source path. The reference arm path has an associated reference arm path length. A sample is also provided having an associated sample arm path coupled to the source arm and reference arm paths. A lens having a focal power optimized for a diameter of the spherical-type eye is provided along with a reference arm path length adjustment module coupled to the reference arm. The reference arm path length adjustment module is configured to automatically adjust the reference arm path length such that the reference arm path length is based on an eye diameter of the subject.
Abstract:
Systems for imaging a sample are provided. The system includes an OCT imaging portion having an associated OCT path defined by one set of optical elements between an OCT signal delivery optical fiber and the sample; an image capture portion having an associated image capture path defined by a second set of optical elements between an image capture device and the sample; and an illuminator portion having an associated illumination path defined by a third set of optical elements between an illumination source and the sample. The OCT path, the image capture path, and the illuminator path have at least one optical element in common, and the respective paths differ from each other by at least one optical element. The illumination path includes a multi-wavelength source of optical radiation.
Abstract:
An optical coherence tomography (OCT) system including a source of broadband optical radiation and a beamsplitter coupled to the source is provided. The beamsplitter divides the source radiation into a reference path and a sample path. The reference path includes an optical switch to switch the reference path between a first path having a first reference reflection at a first reference optical path length and a second path having a second reference reflection at a second reference optical path length. The system further includes a beam combiner that mixes source radiation reflected from a subject in the sample path with source radiation returned from the first reference reflection and the second reference reflection. A detection system detects a first wavelength dependent interferogram during the first time interval and a second wavelength dependent interferogram during the second time interval. A processor preconditions the first and second wavelength dependent interferograms.
Abstract:
Methods of obtaining a measure of blood flow using a Fourier domain optical coherence tomography (FDOCT) system is provided. The method includes obtaining a first optical coherence tomography (OCT) survey scan of a retina of a subject using an OCT scan beam and obtaining a second OCT scan of the retina. The second OCT scan is within an area defined by the obtained first OCT scan and includes a region of retinal blood vessels emerging from and returning to an Optic Nerve Head (ONH) of the retina. An optical phase change is determined from the obtained second OCT scan, the optical phase change being associated with blood flow in a retinal blood vessel in the region of the second OCT scan. An angle of the retinal blood vessel associated with the optical phase change is determined, the angle being measured relative to a direction of transmission of the OCT scan beam. A quantitative measure of vessel blood flow is computed using the optical phase change and the vessel angle relative to the direction of the OCT scan beam.
Abstract:
Methods of acquiring an image are provided. The methods include deriving a first boundary surface from a volumetric image; deriving a second boundary surface, different and spaced apart from the first boundary surface, of the volumetric image, the first and second boundary surfaces defining a slice of the volumetric image therebetween; and deriving at least one intermediate thin section between the first and second boundary surfaces, the thin section having a thickness that is less than a thickness of the slice of the volumetric image defined by the first and second boundary surfaces. Systems and computer program products are also provided.
Abstract:
Systems for imaging a sample are provided. The system includes an optical coherence tomography (OCT) imaging portion having an associated OCT path defined by one set of optical elements between an OCT signal delivery optical fiber and the sample; an image capture portion having an associated image capture path defined by a second set of optical elements between an image capture device and the sample, different from the OCT path; and an illuminator portion having an associated illumination path defined by a third set of optical elements between an illumination source and the sample. The OCT path, the image capture path, and the illuminator path have at least one optical element in common, and the respective paths differ from each other by at least one optical element. The OCT path and the image capture path share a common intermediate conjugate image plane. Focal control is achieved for the OCT path and the image capture path concurrently through adjustment of one or more common optical elements distal to the common intermediate conjugate plane, such that focal control requires no differential adjustment between optical elements not in common to both paths.
Abstract:
Surgical microscope systems are provided including an optical coherence tomography (OCT) system; an objective lens; oculars for direct viewing of a subject distal to the objective lens; a heads up display module configured to direct an optical image through the oculars to be visible to a user of at least one ocular; and a coupling element connected to the surgical microscope coupling the OCT system, the heads up display module and the objective lens. The coupling element has first and second faces, the first face positioned toward the oculars of the surgical microscope and the second face positioned toward the subject. The coupling element is configured to receive a heads up optical display signal at the first face of the coupling element and reflect the signal in a wavelength band of the heads up display module; and receive a signal on the second face of the coupling element and reflect the signal in a wavelength band of the OCT system.