Abstract:
A system and method for adaptive illumination, the imaging system comprising an excitation source having a modulator, which generates a pulse intensity pattern having a first wavelength when the excitation source receives a modulation pattern. The modulation pattern is a data sequence of a structural image of a sample. An amplifier of the imaging system is configured to receive and amplify the pulse intensity pattern from the modulator. A frequency shift mechanism of the imaging system shifts the first wavelength of the pulse intensity pattern to a second wavelength. A laser scanning microscope of the imaging system receives the pulse intensity pattern having the second wavelength.
Abstract:
A system and method for adaptive illumination, the imaging system comprising an excitation source having a modulator, which generates a pulse intensity pattern having a first wavelength when the excitation source receives a modulation pattern. The modulation pattern is a data sequence of a structural image of a sample. An amplifier of the imaging system is configured to receive and amplify the pulse intensity pattern from the modulator. A frequency shift mechanism of the imaging system shifts the first wavelength of the pulse intensity pattern to a second wavelength. A laser scanning microscope of the imaging system receives the pulse intensity pattern having the second wavelength.
Abstract:
A system and method for adaptive illumination, the imaging system comprising an excitation source having a modulator, which generates a pulse intensity pattern having a first wavelength when the excitation source receives a modulation pattern. The modulation pattern is a data sequence of a structural image of a sample. An amplifier of the imaging system is configured to receive and amplify the pulse intensity pattern from the modulator. A frequency shift mechanism of the imaging system shifts the first wavelength of the pulse intensity pattern to a second wavelength. A laser scanning microscope of the imaging system receives the pulse intensity pattern having the second wavelength.
Abstract:
Embodiments of the present invention generally relate to optical mode conversion using intermodal Cherenkov radiation. More specifically, embodiments of the present invention relate to optical mode conversion utilizing intermodal four-wave mixing to convert light between modes for complex applications, whereby one of the four waves is generated from Cherenkov radiation. In one embodiment of the present invention, a fiber comprises an input end for receiving light in a first mode at a first wavelength, and an output end for outputting light in a desired second mode at a desired second wavelength; wherein the desired second mode is controlled deforming the fiber, such as by bending, during an intermodal Cherenkov radiation process.
Abstract:
A system and method for adaptive illumination, the imaging system comprising an excitation source having a modulator, which generates a pulse intensity pattern having a first wavelength when the excitation source receives a modulation pattern. The modulation pattern is a data sequence of a structural image of a sample. An amplifier of the imaging system is configured to receive and amplify the pulse intensity pattern from the modulator. A frequency shift mechanism of the imaging system shifts the first wavelength of the pulse intensity pattern to a second wavelength. A laser scanning microscope of the imaging system receives the pulse intensity pattern having the second wavelength.
Abstract:
An integrated GHz ultrasonic neuro-cognitive system including a chip-cyborg having a network of biological neurons that forms a biological information processor, which can be controlled by electronics, optics, and GHz ultrasonic beams. In one example, the chip-scale microsystem includes a CMOS chip with RF CMOS and piezoelectric thin film transducers that can generate GHz ultrasonic waves, which can be phased to form narrow beams, achieving significant ultrasonic intensity to affect neurons. With a sufficient number of ultrasonic pixels, the focal point of the beam can be narrow enough to focus effect specific section of a neuron to enhance or decrease synaptic weights owing to ultrasonic radiation forces and acoustic streaming.
Abstract:
A multi-photon wavefront sensor system and method. The system includes a Shack-Hartmann wavefront sensor and a laser excitation source configured to emit a plurality of laser pulses at a wavelength in the near-infrared range, wherein the plurality of laser pulses are configured to induce multi-photon absorption in a detector material of the Shack-Hartmann wavefront sensor.