Abstract:
Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, flits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanoliter/picoliter-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals. A self-aligned channel-strengthening technique increases pressure rating of the microfluidic system, allowing it to withstand the high pressure normally used in high performance liquid chromatography (HPLC). On-chip sample injection, separation, and detection of mixture of anions in water is successfully demonstrated using ion-exchange nano-LC.
Abstract:
Systems and methods for monitoring analytes in real time using integrated chromatography systems and devices. Integrated microfluidic liquid chromatography devices and systems include multiple separation columns integrated into a single substrate. Using such a device, parallel analysis of multiple samples can be performed simultaneously and/or sequential analysis of a single sample can be performed simultaneously on a single chip or substrate. The devices and systems are well suited for use in high pressure liquid chromatography (HPLC) applications. HPLC chips and devices including embedded parylene channels can be fabricated using a single mask process.
Abstract:
Systems and methods for monitoring analytes in real time using integrated chromatography systems and devices. Integrated microfluidic liquid chromatography devices and systems include multiple separation columns integrated into a single substrate. Using such a device, parallel analysis of multiple samples can be performed simultaneously and/or sequential analysis of a single sample can be performed simultaneously on a single chip or substrate. The devices and systems are well suited for use in high pressure liquid chromatography (HPLC) applications. HPLC chips and devices including embedded parylene channels can be fabricated using a single mask process.
Abstract:
Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, flits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanolitre/picolitre-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals. A self-aligned channel-strengthening technique increases pressure rating of the microfluidic system, allowing it to withstand the high pressure normally used in high performance liquid chromatography (HPLC). On-chip sample injection, separation, and detection of mixture of anions in water is successfully demonstrated using ion-exchange nano-LC.