Abstract:
This document discusses, among other things, systems and methods to fabricate and operate an implantable medical device. The implantable medical device can include a housing portion defining an interior chamber. The implantable medical device can include a circuit in the interior chamber. The implantable medical device can include a first electronic component that is not in the interior chamber. The implantable medical device can include a substrate coupled to the housing, the substrate including a first via extending through the substrate, the first via electrically coupling the first electronic component to the circuit.
Abstract:
This document discusses, among other things, systems and methods to fabricate and operate an implantable medical device. The implantable medical device can include a housing portion defining an interior chamber. The implantable medical device can include a circuit in the interior chamber. The implantable medical device can include a first electronic component that is not in the interior chamber. The implantable medical device can include a substrate coupled to the housing, the substrate including a first via extending through the substrate, the first via electrically coupling the first electronic component to the circuit.
Abstract:
Implantable medical devices including interconnections having strain-relief structure. The interconnections can take the form of flexible circuits. Strain relief gaps and shapes are integrated in the interconnections to relieve forces in each of three dimensions. In some examples, the region of an interconnection which couples with a component of the implantable medical device is separated by a strain relief gap from a connection to a second component and/or a location where the flex bends around a corner.
Abstract:
Implantable medical devices comprising electromagnetic interference shields which incorporate a dump resistor and various enhancements to control high voltage arcing. Included are embodiments in which a dump resistor is provided in a flexible shield having first and second conductive layers, where the resistor is provided in a layer between the conductive layers. In additional examples the design of plated through-holes is done to avoid the potential for arcing while maintaining close spacing.
Abstract:
A filtered feedthrough assembly for an implantable medical device includes a ferrule, an electrical insulator coupled to the ferrule by a connection element, a plurality of feedthrough conductors extending through the electrical insulator, a printed circuit board (PCB), and a plurality of capacitors. The PCB is coupled to the ferrule or the electrical insulator, and includes one or more ground layers and a plurality of vias. The connection element is electrically coupled to the ground layer through the vias. The capacitor has a ground terminal electrically coupled to the ground layer through at least one of the vias, and a conductor terminal electrically coupled to the feedthrough conductor.
Abstract:
A system including a mapping device, a stimulator, and a marker. The mapping device includes a plurality of electrodes to be situated on a baroreceptor region of a patient to map baroreceptors in the baroreceptor region. The stimulator is to stimulate selected electrodes of the plurality of electrodes to obtain physiological responses from the patient in response to stimulation of the selected electrodes. The marker is to be attached to the patient to mark a location of at least one of the selected electrodes based on an analysis of the physiological responses from the patient, where the marker is to maintain its location on the patient as the mapping device is removed from the patient.
Abstract:
A filtered feedthrough assembly for an implantable medical device comprises a ferrule, an electrical insulator coupled to the ferrule by a connection element, a plurality of feedthrough conductors extending through the electrical insulator, a printed circuit board (PCB), and plurality of capacitors. The PCB is coupled to the ferrule or the electrical insulator, and includes one or more ground layers and a plurality of vias. The connection element is electrically coupled to the ground layer through the vias. The capacitor has a ground terminal electrically coupled to the ground layer through at least one of the vias, and a conductor terminal electrically coupled to the feedthrough conductor.
Abstract:
A position sensor assembly includes a base member having a proximal portion, a distal portion, and an intermediate portion disposed therebetween and having a twisted configuration such that the proximal and distal portions are oriented in mutually orthogonal planes. At least first and second magnetic field sensors each including at least one magnetic field sensing element are disposed, respectively, on the proximal and distal portions of the base member. The base member further includes a first base member element defining the proximal portion of the base member, and a second base member element defining the distal portion of the base member, the first and second base member elements being electrically and mechanically connected at a joint.
Abstract:
A system for mapping and marking baroreceptors of a patient. The system includes a mapping device, a marker, and a stimulator. The mapping device includes a plurality of electrodes to be situated on the patient. The marker is to be attached to the patient and mark a location of at least one of the plurality of electrodes based on an analysis of patient physiological responses to stimulation of the plurality of electrodes. The stimulator is to divide the plurality of electrodes into a first electrode zone and a second electrode zone and stimulate electrodes in the first electrode zone and the second electrode zone to obtain first patient physiological responses, where one of the first electrode zone and the second electrode zone is selected based on the first patient physiological responses.
Abstract:
A filtered feedthrough assembly for an implantable medical device comprises a ferrule, an electrical insulator coupled to the ferrule by a connection element, a plurality of feedthrough conductors extending through the electrical insulator, a printed circuit board (PCB), and plurality of capacitors. The PCB is coupled to the ferrule or the electrical insulator, and includes one or more ground layers and a plurality of vias. The connection element is electrically coupled to the ground layer through the vias. The capacitor has a ground terminal electrically coupled to the ground layer through at least one of the vias, and a conductor terminal electrically coupled to the feedthrough conductor.