Abstract:
The invention relates to a method for coating surfaces, to a corresponding coating, and to the use of the objects coated in accordance with said method. The invention relates to a method for coating metal surfaces of substrates, comprising or consisting of the following steps: I. providing a substrate having a cleaned metal surface, II. contacting and coating metal surfaces with an aqueous composition in the form of a dispersion and/or suspension, IX. optionally rinsing the organic coating, and X. drying and/or baking the organic coating or XI. optionally drying the organic coating and coating with a coating composition of the same type or a further coating composition before a drying process and/or baking process, wherein in step II the coating is performed with an aqueous composition in the form of a dispersion and/or suspension containing 2.5 to 45 wt % of at least one non-ionic stabilized binder and 0.1 to 2.0 wt % of a gelling agent, wherein the aqueous composition has a pH value in the range of 0.5 to 7 and forms, with the cations eluted from the metal surface in the pretreatment step and/or during the contacting in step II, a coating based on an ionogenic gel.
Abstract:
A coating, a method for coating surfaces, and the coated surfaces. The method includes providing a substrate with a cleaned metal surface; contacting and coating the metal surface with an aqueous composition having a ph of from 0.5 to 7.0 and in the form of a dispersion and/or a suspension; optionally rinsing the organic coating; and drying and/or baking the organic coating, or optionally drying the organic coating and coating same with a similar or another coating composition thereto. The composition contains a complex fluoride in a quantity of 1.1 10−6 mol/l to 0.30 mol/l based on the cations. An anionic polyelectrolyte in a quantity of 0.01 to 5.0 wt % based on the total mass of the resulting mixture is added to an anionically stabilized dispersion made of film-forming polymers and/or a suspension made of film-forming inorganic particles.
Abstract:
Binders stabilized in an aqueous phase and capable of codeposition with ionogenic gel-formers are disclosed. The binder may be a resin or polymer, including polyacrylates, polyurethanes, polyepoxides, urethane acrylates, aromatic and (cyclo)-aliphatic epoxy acrylates, polyesters, and mixtures thereof. The binders are modified by reactions between reactive groups on the binder and hydrophilic, functional molecules. Reactive groups on the binder may include isocyanates, hydroxyls, carboxyls, oxiranes, vinyls and amines. A method of producing such dispersions is disclosed.
Abstract:
A method and composition for coating surfaces, a corresponding coating and the use of objects coated according to said method. A cleaned, metallic surface is contacted with an aqueous composition that is a dispersion or suspension, and drying and/or baking the organic coating or optionally, drying the organic coating and coating with an equivalent or additional coating composition prior to a drying and/or baking. The aqueous composition has a pH of 4 to 11 and contains an anionic polyelectrolyte in a quantity of 0.01 to 5.0 wt. % relative to the total mass of the composition, which may have a solids content of from 2 to 40 wt. %. The solids have an average particle size from 10 to 1000 nm. A coating forms on the basis of an ionogenic gel which binds cations released from the metallic surface that originate from a pretreatment stage or from the contacting.
Abstract:
A coating, a method for coating surfaces, and the coated surfaces. The method includes providing a substrate with a cleaned metal surface; contacting and coating the metal surface with an aqueous composition having a ph of from 0.5 to 7.0 and in the form of a dispersion and/or a suspension; optionally rinsing the organic coating; and drying and/or baking the organic coating, or optionally drying the organic coating and coating same with a similar or another coating composition thereto. The composition contains a complex fluoride in a quantity of 1.1 10−6 mol/l to 0.30 mol/l based on the cations. An anionic polyelectrolyte in a quantity of 0.01 to 5.0 wt % based on the total mass of the resulting mixture is added to an anionically stabilized dispersion made of film-forming polymers and/or a suspension made of film-forming inorganic particles.
Abstract:
A coating, a method for coating surfaces, and the coated surfaces. The method includes providing a substrate with a cleaned metal surface; contacting and coating the metal surface with an aqueous composition having a ph of from 0.5 to 7.0 and in the form of a dispersion and/or a suspension; optionally rinsing the organic coating; and drying and/or baking the organic coating, or optionally drying the organic coating and coating same with a similar or another coating composition thereto. The composition contains a complex fluoride in a quantity of 1.1 10−6 mol/l to 0.30 mol/l based on the cations. An anionic polyelectrolyte in a quantity of 0.01 to 5.0 wt % based on the total mass of the resulting mixture is added to an anionically stabilized dispersion made of film-forming polymers and/or a suspension made of film-forming inorganic particles.
Abstract:
A coating, a method for coating surfaces, and the coated surfaces. The method includes providing a substrate with a cleaned metal surface; contacting and coating the metal surface with an aqueous composition having a ph of from 0.5 to 7.0 and in the form of a dispersion and/or a suspension; optionally rinsing the organic coating; and drying and/or baking the organic coating, or optionally drying the organic coating and coating same with a similar or another coating composition thereto. The composition contains a complex fluoride in a quantity of 1.1 10−6 mol/l to 0.30 mol/l based on the cations. An anionic polyelectrolyte in a quantity of 0.01 to 5.0 wt % based on the total mass of the resulting mixture is added to an anionically stabilized dispersion made of film-forming polymers and/or a suspension made of film-forming inorganic particles.
Abstract:
The invention relates to a method for removing a substrate that is coated with an organic coated coating by means of ionogenic gel formation. In said method, a wet or dry organic coating that has not yet formed a film on the substrate is treated with an aqueous solution of a metal salt from main group I in the periodic table of the elements, a complexing agent and/or a basic compound having a pH value >10.
Abstract:
The invention relates to a method for coating surfaces, to a corresponding coating, and to the use of the objects coated according to said method. According to the invention, the method has or consists of the following steps: I. providing a substrate with a cleaned surface, II. contacting and coating the surfaces with an aqueous composition in the form of a dispersion and/or suspension, VI. if necessary rinsing the organic coating, and VII. drying and/or baking the organic coating or VIII. if necessary drying the organic coating and carrying out a coating process using a similar or additional coating composition prior to a drying and/or baking process, wherein between step I and step II, the coating process is carried out using an aqueous composition in the form of a dispersion and/or suspension on the basis of a colloidal silicate sol, which incorporates multivalent metal cations, or a silane- or silicate-modified polymer and if necessary a rinsing process is carried out.
Abstract:
Aqueous coating compositions are provided. The aqueous compositions include at least one type of organic polymer particles having an average particle size of 10 to 1000 nm, including isocyanate-reactive polymers (A), one or more ketoxime- and/or pyrazole-blocked polyisocyanates (B) including at least one aromatic hydrocarbyl radical or at least one cycloaliphatic hydrocarbyl radical, at least one polyanionic polymer (C), at least one complex fluoride (D) selected from the group consisting of hexa- or tetrafluorides of metallic elements of groups IVb, Vb and VIb of the Periodic Table of the Elements, and at least one aminosilane (E), wherein the aqueous coating compositions have a pH of 3 to 5, and have a total solids content of 5% to 35% by weight. Also provided are processes for producing these aqueous coating compositions, processes for coating metal ion-releasing surfaces with the aqueous coating compositions, and coatings obtained therefrom.