Abstract:
An isolated switching converter includes a transformer, a primary circuit, a rectifying circuit and an optocoupler with a photo-sensitive device and a light emitting device, wherein the light emitting device has a first terminal coupled to an output voltage of the switching converter. A method for controlling the switching converter includes: sensing the output voltage and generating a voltage feedback signal; generating an error amplifying signal based on a reference signal and the voltage feedback signal, and providing the error amplifying signal to a second terminal of the light emitting device; disconnecting the error amplifying signal from the second terminal of the light emitting device if the error amplifying signal becomes lower than a first threshold voltage; and reconnecting the error amplifying signal to the second terminal of the light emitting device when the voltage reference signal becomes lower than a second threshold voltage.
Abstract:
A digital PFC circuit with improved power factor is described. The digital PFC circuit uses a compensation current generating unit and a reference current adjust unit to eliminate the effect of a current flowing through an input capacitor to the input current, so that the input current and the input line voltage of the digital PFC circuit are controlled to be in-phase.
Abstract:
A boost PFC converter, a method and a control circuit used for boost PFC converter are discussed in the present invention. The boost PFC converter decreases the switching frequency when a line voltage is around zero, so that the whole operating efficiency is not decreased.
Abstract:
A resonant converter has a switching circuit having a first switch and a second switch, a control circuit and a resonant circuit. The control circuit has a slope sensing circuit providing a slope sense signal based on a voltage variation at the common node of the first switch and the second switch, a slope judge circuit providing a slope judge signal, and a turn-ON control circuit providing a first reset signal to adjust a first dead-time period from turning OFF the first switch to turning ON the second switch based on the slope judge signal, the slope signal, and a current flowing through the resonant tank, and providing a second reset signal to adjust a second dead-time period from turning OFF the second switch to turning ON the first switch based on the slope judge signal, the slope signal, and the current flowing through the resonant tank.
Abstract:
A power factor correction circuit including a rectifier bridge, an energy storage component, a power switch, a second switch and a control circuit provides reduced THD and improved PF performance under a high input AC voltage.
Abstract:
A boost PFC converter, a method and a control circuit used for boost PFC converter are discussed in the present invention. The boost PFC converter decreases the switching frequency when a line voltage is around zero, so that the whole operating efficiency is not decreased.
Abstract:
A digital PFC circuit with improved power factor is described. The digital PFC circuit uses a compensation current generating unit and a reference current adjust unit to eliminate the effect of a current flowing through an input capacitor to the input current, so that the input current and the input line voltage of the digital PFC circuit are controlled to be in-phase.
Abstract:
A resonant converter has a switching circuit having a first switch and a second switch, a control circuit and a resonant circuit. The control circuit has a slope sensing circuit providing a slope sense signal based on a voltage variation at the common node of the first switch and the second switch, a slope judge circuit providing a slope judge signal, and a turn-ON control circuit providing a first reset signal to adjust a first dead-time period from turning OFF the first switch to turning ON the second switch based on the slope judge signal, the slope signal, and a current flowing through the resonant tank, and providing a second reset signal to adjust a second dead-time period from turning OFF the second switch to turning ON the first switch based on the slope judge signal, the slope signal, and the current flowing through the resonant tank.
Abstract:
A PFC circuit includes: a switching circuit having a power switch; an on time control circuit for controlling an on time period of the power switch; a first off time control circuit; a second off time control circuit; and a logic circuit selectively controls the power switch working under CCM or DCM; when working under CCM, the first off time control circuit controls an off time period of the power switch and when working under DCM, the second off time control circuit controls the off time period of the power switch.
Abstract:
A switching mode power supply with resonant technology. The switching mode power supply current uses current polarity evaluation to avoid capacitive mode by triggering the capacitive protection if the evaluation indicates that the system will enter capacitive mode.