Abstract:
A process is disclosed for the delayed sintering of metal nanoparticles in a self-assembled transparent conductive coating by incorporating a sintering additive into the water phase of the emulsion used to form the coating. The sintering additive reduces the standard reduction potential of the metal ion of the metal forming the nanoparticles by an amount greater than 0.1V but less than the full reduction potential of the metal ion. Emulsion compositions used in the process are also disclosed.
Abstract:
A method for producing a metal nanoparticle composition including: (a) providing an alloy that includes silver and aluminum; (b) subjecting the alloy to a first thermal treatment to form a thermally treated alloy; (c) cold working the thermally treated alloy to form strips or pellets comprising the alloy; (d) subjecting the strips or pellets to a second thermal treatment at a temperature less than 440° C. to form thermally treated strips or pellets; (e) subjecting the thermally treated strips or pellets to a leaching agent effective to leach out a portion of the aluminum and form a metal nanoparticle composition comprising metal nanoparticles; and (f) washing, filtering, and then drying the metal nanoparticle composition.
Abstract:
A process for making a photovoltaic cell includes providing a semiconducting substrate having a back side passivation layer, and coating a self-assembling emulsion that includes glass frit particles onto the back side passivation layer. The emulsion is allowed to self-assemble into a network of traces that define cells. An electrode is formed over the network to create a precursor cell, which is then fired to cause the network to burn through the passivation layer and establish electrical contact between the semiconducting substrate and the electrode.