Abstract:
A novel coated catalyst having an outer shell which is composed of a catalyst material having high surface area and contains molybdenum, vanadium, tellurium and niobium, and the use of this catalyst for the oxidative dehydrogenation of ethane to ethene or the oxidation of propane to acrylic acid and also a process for producing the catalyst is disclosed.
Abstract:
The invention relates to a catalyst arrangement for preparing phthalic anhydride by gas-phase oxidation of aromatic hydrocarbons, which comprises a reactor having a gas inlet end for a feed gas and a gas outlet end for a product gas and also a first catalyst zone made up of catalyst bodies and at least one second catalyst zone made up of catalyst bodies, where the first catalyst zone is arranged at the gas inlet end and the second catalyst zone is arranged downstream of the first catalyst zone in the gas flow direction and the length of the first catalyst zone in the gas flow direction is less than the length of the second catalyst zone in the gas flow direction, characterized in that the first catalyst zone has a higher gap content compared to the second catalyst zone.
Abstract:
A catalytic converter arrangement for producing phthalic anhydride by means of a gas phase oxidation of aromatic hydrocarbons, comprising a reactor with a gas inlet side for a reactant gas, a gas outlet side for a product gas, a first catalytic converter layer made of catalytic converter elements, and at least one second catalytic converter layer made of catalytic converter elements. The first catalytic converter layer is arranged on the gas inlet side, and the second catalytic converter layer is arranged downstream of the first catalytic converter layer in the gas flow direction. The catalytic converter elements have an outer layer of an active compound. The invention is characterized in that the active compound content in the first catalytic converter layer and/or in the second catalytic converter layer is below 7 wt. %, based on the total weight of the catalytic converter elements, and the ratio of the total surface of the active compound to the volume of the catalytic converter layer is preferably 10000 cm−1 to 20000 cm−1, in each catalytic converter layer.
Abstract:
The present invention relates to a process for producing a composite material and also the composite material itself. The composite material contains a bismuth-molybdenum-nickel mixed oxide or a bismuth-molybdenum-cobalt mixed oxide and a specific SiO2 as pore former. The present invention also relates to the use of the composite material according to the invention for producing a washcoat suspension and also a process for producing a coated catalyst using the composite material according to the invention. Furthermore, the present invention also relates to a coated catalyst which has a catalytically active shell comprising the composite material according to the invention on a support body. The coated catalyst according to the invention is used for preparing [alpha],[beta]-unsaturated aldehydes from olefins.
Abstract:
Described herein is a Pd- and Au-containing shell catalyst having an improved distribution of Pd. Also described are two processes for producing this catalyst and a process for producing vinyl acetate monomer using this catalyst.
Abstract:
The present invention relates to a Pd- and Au-containing shell catalyst which is characterised by an improved Pd and Au distribution. The invention also relates to two methods for producing said catalyst and to a method for producing vinyl acetate monomer using said catalyst.
Abstract:
The invention relates to a catalyst system for producing maleic anhydride by means of the catalytic oxidation of n-butane, comprising at least one reactor tube, which has two catalyst layers consisting of different catalyst particles, characterized in that the geometric surface area per catalyst particle is greater in the catalyst layer that is first in the gas flow direction than in the second catalyst layer. The invention further relates to a process for producing maleic anhydride by means of the catalytic oxidation of n-butane, wherein a mixture of oxygen and n-butane is fed through the catalyst system according to the invention and the at least one reactor tube is at elevated temperature.
Abstract:
The disclosure relates to a process for producing a VPO catalyst containing molybdenum and a vanadyl pyrophosphate phase, which comprises the steps: a) provision of a reaction mixture comprising a V(V) compound, a P(V) compound, an Mo compound, a reducing agent and a solvent, b) reduction of the V(V) compound by means of the reducing agent at least in parts to give vanadyl hydrogenphosphate in order to obtain an intermediate suspension, c) filtration of the intermediate suspension from step b) in order to obtain an intermediate, d) drying of the intermediate at a temperature of not more than 350° C. in order to obtain a dried intermediate and e) activation of the dried intermediate at a temperature above 200° C., characterized in that not more than 0.2% by weight of water, based on the weight of the reaction mixture, is present in step a) and no water is withdrawn during the reduction in step b). The disclosure further relates to a VPO catalyst which is able to be produced by the process of the disclosure and also a catalyst containing the molybdenum-containing vanadium-phosphorus mixed oxide.
Abstract:
The present invention relates to a process for producing a composite material and also the composite material itself. The composite material contains a bismuth-molybdenum-nickel mixed oxide or a bismuth-molybdenum-cobalt mixed oxide and a specific SiO2 as pore former. The present invention also relates to the use of the composite material according to the invention for producing a washcoat suspension and also a process for producing a coated catalyst using the composite material according to the invention. Furthermore, the present invention also relates to a coated catalyst which has a catalytically active shell comprising the composite material according to the invention on a support body. The coated catalyst according to the invention is used for preparing [alpha],[beta]-unsaturated aldehydes from olefins.