Abstract:
Preparation of a catalyst suitable for use in Fischer-Tropsch Synthesis reactions using a two step process in which the steps may be performed in either order. In step a), impregnate an iron carboxylate metal organic framework selected from a group consisting of iron-1,3,5-benzenetricarboxylate (Fe-(BTC), Basolite™ F-300 and/or MIL-100 (Fe)), iron-1,4 benzenedicarboxylate (MIL-101(Fe)), iron fumarate (MIL-88 A (Fe)), iron-1,4 benzenedicarboxylate (MIL-53 (Fe)), iron-1,4 benzenedicarboxylate (MIL-68 (Fe)) or iron azobenzenetetracarboxylate (MIL-127 (Fe)) with a solution of a promoter element selected from alkali metals and alkaline earth metals. In step b) thermally decompose the iron carboxylate metal organic framework under an inert gaseous atmosphere to yield a catalyst that is a porous carbon matrix having embedded therein a plurality of discrete aliquots of iron carbide. If desired, add a step intermediate between steps a) and b) or preceding step b) wherein the metal organic framework is impregnated with an oxygenated solvent solution of a polymerizable additional carbon source and the polymerizable additional carbon source is thereafter polymerized.
Abstract:
A catalyst composition and process for preparing it and for using it to enhance the selectivity to light (C2 to C3) olefins in a Fischer-Tropsch conversion of synthesis gas is disclosed. The catalyst composition is an iron-based catalyst on an yttria/zirconia support. In a Fischer-Tropsch reaction the selectivity to ethylene may be enhanced by at least 20 mole percent and to propylene by at least 4 mole percent, in comparison with use of an otherwise identical catalyst that is free of yttria, in an otherwise identical Fischer-Tropsch reaction.
Abstract:
A catalyst composition and process for preparing it and for using it to enhance the selectivity to light (C2 to C3) olefins in a Fischer-Tropsch conversion of synthesis gas is disclosed. The catalyst composition is an iron-based catalyst on an yttria/zirconia support. In a Fischer-Tropsch reaction the selectivity to ethylene may be enhanced by at least 20 mole percent and to propylene by at least 4 mole percent, in comparison with use of an otherwise identical catalyst that is free of yttria, in an otherwise identical Fischer-Tropsch reaction.
Abstract:
According to one or more embodiments of the present disclosure, a method for producing olefins includes contacting a hydrocarbon-containing feed with a catalyst in a reactor portion of a reactor system to form an olefin-containing effluent, separating at least a portion of the olefin-containing effluent from the catalyst, passing the catalyst to a catalyst-processing portion of the reactor system and processing the catalyst to produce a processed catalyst and a combustion gas, passing the processed catalyst from the catalyst-processing portion to the reactor portion, and introducing a combustion additive to the reactor system when the combustion gas comprises one or more hydrocarbons in an amount greater than 5% of an LFL of the combustion gas at a temperature and pressure of the catalyst processing portion. The catalyst may include from 1 ppmw to 150 ppmw platinum. The combustion additive may include from 150 ppmw to 1,000 ppmw platinum.
Abstract:
According to one or more embodiments of the present disclosure, a catalyst system useful for dehydrogenation includes from 98 vol. % to 99.95 vol. % of a catalyst and from 0.05 vol. % to 2 vol. % of a combustion additive. The catalyst may include from 1 ppmw to 150 ppmw platinum, gallium, and a support material. The combustion additive may include from 150 ppmw to 1,000 ppmw platinum, gallium, and a support material. The combustion additive may include at least 1.1 times greater platinum than the catalyst.
Abstract:
A method for dehydrogenation of one or more hydrocarbons and regeneration and reactivation of a catalyst composition includes contacting a first gaseous stream comprising a first hydrocarbon, such as propane, with a catalyst composition in a dehydrogenation reactor at a first temperature, thereby producing a first dehydrogenated hydrocarbon, such as propylene, and a deactivated catalyst composition; combusting at least one fuel gas and coke on the deactivated catalyst in the presence of oxygen at a second temperature, thereby producing a heated catalyst composition; and reactivating the catalyst in the presence of oxygen. The second temperature is from 50° C. to 200° C. greater than the first temperature. The catalyst composition is also described and comprises gallium, platinum and a further noble metal, such as palladium.
Abstract:
Preparation of a catalyst suitable for use in Fischer-Tropsch Synthesis reactions using a two step process in which the steps may be performed in either order. In step a), impregnate an iron carboxylate metal organic framework selected from a group consisting of iron-1,3,5-benzenetricarboxylate (Fe-(BTC), Basolite™ F-300 and/or MIL-100 (Fe)), iron-1,4 benzenedicarboxylate (MIL-101(Fe)), iron fumarate (MIL-88 A (Fe)), iron-1,4 benzenedicarboxylate (MIL-53 (Fe)), iron-1,4 benzenedicarboxylate (MIL-68 (Fe)) or iron azobenzenetetracarboxylate (MIL-127 (Fe)) with a solution of a promoter element selected from alkali metals and alkaline earth metals. In step b) thermally decompose the iron carboxylate metal organic framework under an inert gaseous atmosphere to yield a catalyst that is a porous carbon matrix having embedded therein a plurality of discrete aliquots of iron carbide. If desired, add a step intermediate between steps a) and b) or preceding step b) wherein the metal organic framework is impregnated with an oxygenated solvent solution of a polymerizable additional carbon source and the polymerizable additional carbon source is thereafter polymerized.
Abstract:
A Fischer-Tropsch catalyst, useful for conversion of synthesis gas to olefins, is prepared from a catalyst precursor composition including iron oxide and an alkali metal on a substantially inert support, and then treated by a process including as ordered steps (1) reduction in a hydrogen-containing atmosphere at a pressure of 0.1 to 1 M Pa and a temperature from 280° C. to 450° C.; (2) carburization in a carbon monoxide-containing atmosphere at a pressure from 0.1 to 1 M Pa and a temperature from 200° C. to less than 340° C.; and (3) conditioning in a hydrogen- and carbon monoxide-containing atmosphere at a pressure from 0.1 to 2 MPa and a temperature from 280° C. to 340° C. The resulting catalyst exhibits at least one improvement selected from (1) increased overall activity; (2) reduced break-in time; (3) slowed rate of deactivation; and (4) increased time to onset of deactivation; when compared to an otherwise identical catalyst precursor composition treated by one or some, but not all, of the given steps and/or under different conditions.
Abstract:
A Fischer-Tropsch catalyst, useful for conversion of synthesis gas to olefins, is prepared from a catalyst precursor composition including iron oxide and an alkali metal on a substantially inert support, and then treated by a process including as ordered steps (1) reduction in a hydrogen-containing atmosphere at a pressure of 0.1 to 1 M Pa and a temperature from 280° C. to 450° C.; (2) carburization in a carbon monoxide-containing atmosphere at a pressure from 0.1 to 1 M Pa and a temperature from 200° C. to less than 340° C.; and (3) conditioning in a hydrogen- and carbon monoxide-containing atmosphere at a pressure from 0.1 to 2 MPa and a temperature from 280° C. to 340° C. The resulting catalyst exhibits at least one improvement selected from (1) increased overall activity; (2) reduced break-in time; (3) slowed rate of deactivation; and (4) increased time to onset of deactivation; when compared to an otherwise identical catalyst precursor composition treated by one or some, but not all, of the given steps and/or under different conditions.