Abstract:
A method of covering a valve and rocker arm area of an internal combustion engine is disclosed. The engine includes an engine exhaust outlet and an engine air inlet. The method includes the step of providing a valve cover assembly which includes a housing having a chamber defined therein, and a conduit positioned in the chamber. The conduit connects the engine exhaust outlet to the engine air inlet. The method also includes the step of securing the valve cover assembly to the engine so that the cover portion of the valve cover assembly covers the valve and rocker arm area. The method further includes the step of advancing exhaust gas from the engine exhaust outlet to the engine air inlet through the conduit. The method still further includes the step of advancing fluid through the housing so as to cool the conduit. A valve cover assembly for use on an internal combustion engine is also disclosed.
Abstract:
An improved valving configuration for dual compression/expansion engines having multiple, relatively small diameter intake transfer valve assemblies disposed about a fuel injection apparatus in the internal housing, a relatively large diameter exhaust transfer valve assembly including a valve, spring apparatus, valve seat and cage for assembly into the internal housing, and a method of assembling the transfer valves to the internal housing including assembling the intake transfer valves to the internal housing through the exhaust transfer valve assembly aperture in the internal housing prior to securing the exhaust transfer valve assembly to the internal housing.
Abstract:
The use of devices to simultaneously actuate multiple valves operatively associated with a common combustion chamber is becoming more important due to the increase in multiple valve internal combustion engines. The ability to simultaneously actuate multiple valves reduces weight, costs, and parts in the engine. The subject valve actuation device (10) has a valve arrangement (12) with at least three valves (14, 15, and 16) having stem portions (40, 41, and 42) operatively associated with a common combustion chamber (22). A free-floating bridge (62) having three recesses (64, 65, and 66) is seated on the stem portions (40, 41, and 42). A movable rocker arm (34) having two fingers (36 and 37) contacts the free-floating bridge (62) at locations sufficient to actuate the valves (14, 15 and 16) simultaneously.
Abstract:
In a hydraulically actuated gas exchange valve, the initiation and termination of gas exchange is achieved with a hydraulically driven valve that functions by opening an actuation fluid passage to a high pressure inlet source and a low pressure drain, respectively. The large amount of fluid needed to actuate a gas exchange valve can result in dynamic flow forces around the hydraulically driven valve making closing of the valve with a conventional biasing spring problematic. The small size of the valve limits the size and therefore strength of the biasing springs. Likewise, the need to provide a sufficiently strong spring limits valve designs. The present invention is intended to provide superior control over the timing of gas exchange by employing a hydraulic bias in place of the conventional biasing spring. Hydraulic bias allows both a greater closing force on the valve than could be provided with a spring, and allows for greater versatility in future valve designs.
Abstract:
A method of engine compression braking for an internal combustion engine is disclosed wherein the engine is converted to a two-cycle mode for braking. Exhaust valves are opened in cylinders wherein associated pistons are near top dead center and substantially simultaneously, exhaust valves are opened in cylinders wherein associated pistons are nominally past bottom dead center. The method results in an advantageous braking power increase due to back-filling of the cylinders wherein the pistons are nominally past bottom dead center. A similar method is disclosed for use during four-cycle braking.
Abstract:
Apparatus for interconnecting an actuator and a pivotable exhaust valve opening member includes a recess in the exhaust valve opening member and a bearing member disposed in the recess and capable of swiveling therein. A plunger is carried by the actuator and is movable into contact with an engagement surface of the bearing member.
Abstract:
A differential comprises a pair of face gears, a carrier rotatably mounted between the face gears and a plurality of pinion gears rotatably mounted on the carrier and intermeshing with the face gears for differentially permitting one face gear to rotate relative to the other face gear. The pinion gears are each rotatably mounted in bearings and a lubrication system is provided for pumping lubricating fluid to the bearings for lubrication and cooling purposes. The lubrication system comprises a double-acting pump mounted adjacent to the carrier and a rocker arm pivotally mounted adjacent to each end of the pump. A first end of the rocker arm engages a cam attached to the carrier whereas a second thereof engages an end of a piston rod reciprocably mounted in the pump to pump lubricating fluid to the bearing. The pump comprises a piston slidably mounted on a rod, a pair of retainers secured to the rod and disposed on either side of the piston, and a compression coil spring disposed between each retainer and the piston.
Abstract:
An improved slant axis rotary mechanism including a housing defining a chamber, a shaft journalled in the housing and having an angular eccentric within the chamber and a rotor within the chamber and journalled on the eccentric. The eccentric includes a radially outwardly extending thrust collar located between the ends of the eccentric. The rotor includes a hub and a peripheral flange and is defined by a centerpiece including the flange and part of the hub and having a bearing pad embracing one side of the thrust collar. An intermediate piece is secured to the centerpiece on one side thereof and has a bearing pad embracing the other side of the thrust collar. A pair of covers each defining part of the hub, are respectively secured to the centerpiece and to the intermediate piece and partially cover the latter.
Abstract:
A shaft arrangement for an axial piston pump assembly to couple to a rotatable member such as a gear therewith. A shaft extends at least partially through a housing chamber of the pump about a longitudinal axis. Reciprocating pistons are disposed within the chamber radially about the shaft. A cam unit is fitted over the shaft and provides an angled camming surface to engage the pistons. Bearing assemblies are fitted over the cam unit. An adapter can be fitted over the proximal end of the cam unit. The adapter has a distal surface which may abut the bearing assembly and be axially spaced from the cam unit, and an outer radial surface to engage the rotatable member. A clamping device provides a desired clamp load path between the rotatable member, the adapter, the cam unit, the bearing assemblies and the shaft.