Abstract:
The disclosure is directed to a system and method for recovery of a broadcast source. Television data is received from the source and encoded. The encoded television data is stored by either (1) appending the encoded television data to programs on a data storage or (2) overwriting an oldest program with the encoded television data if the data storage does not have capacity to append. The source is monitored for a broadcast failure. As long as the broadcast source is operational, television data is received, encoded, and stored. Once a broadcast failure is detected, selected programs on the data storage are decoded and broadcast. This decoding and broadcasting continues until the broadcast failure at the broadcast source is repaired.
Abstract:
Methods for manipulating a plurality of layered windows on a display are described. Specifically, the manipulation of layered windows includes moving a pointer to a visible portion of a partially hidden window and holding the pointer at the visible portion for a predetermined period of time. Responsive to the holding for a predetermined period of time, the partially hidden window is revealed. The manipulation of the layered windows can be used to drag and drop an icon from an active window to an inactive window. During the drag of an object, holding down a predetermined key on the keyboard can send the top-most-layered window to the back thereby disclosing other windows. If no drop occurs at the end of a drag operation, windows are returned to their original layers. However, if a drop occurs, the window in which the object is dropped becomes the topmost layer while other windows return to their original layers.
Abstract:
An apparatus for transmitting a multiplexed analog component television signal. The apparatus includes a signal source generator for generating a signal source having information regarding the number of lines per frame. A multiplexed analog component television signal generator generates a multiplexed analog component television signal having a varying number of lines per frame and including information regarding the number of lines per frame. A transmitter coupled to the multiplexed analog component television signal generator transmits the television signal to at least one remote terminal.
Abstract:
A wireless network has a plurality of nodes that are configured to communicate electrical signals via a backhaul channel in which messages hop from node-to-node through the network. The nodes have optical transmitters for communicating with tags via an optical channel that is time division multiplexed (TDM) among the nodes of the network. The nodes are configured to transmit an electrical synchronization signal via the backhaul channel and to synchronize transmissions for the optical channel based on the electrical synchronization signal. Thus, use of the backhaul channel to communicate the synchronization signal leverages the existing framework of the network in order to synchronize the optical transmitters without requiring specialized synchronization circuitry, and a robust TDM algorithm can be implemented for the optical channel with relatively low complexity and costs.
Abstract:
Serial processing of video signals is efficiently carried out by the method and system which makes use of specifically configured bitstream processors. The particular bitstream processors utilized include specifically configured decoder blocks and encoder blocks which are uniquely designed to carry out the serial processing tasks necessary for video encoding and decoding operations. These encoder and decoder blocks are uniquely programmed within the bitstream processor, thus providing specific capabilities most beneficial when dealing with video data.
Abstract:
One embodiment includes a system for application-layer monitoring of communication between one or more database clients and one or more database servers. The system includes one or more decoders residing at a decoding layer above a network layer. The decoders reside at a first network location between one or more database clients residing at one or more second network locations and one or more database servers residing at one or more third network locations. The decoders receive database messages communicated from the database clients and intended for the database servers and database messages communicated from the database servers and intended for the database clients, decode the database messages, and extract query-language statements from the database messages. The system also includes a monitoring application residing at an application layer above the decoding layer. The monitoring application resides at the first network location. The monitoring application receives query-language statements extracted at the decoders and records observations on the database messages based on the query-language statements extracted at the decoders.
Abstract:
A wireless mesh network has a plurality of nodes. One of the nodes, referred to as a “topology building node,” is configured to discover a topology of the network. In this regard, a multicast topology message is transmitted via at least one node of the network. Each node that receive such message transmits a topology multicast reply to the topology building node which adds the transmitting node to the topology if the transmitting node is not already identified by the topology. Upon adding a node to the topology, the topology building node transmits a topology multicast command to the added node thereby causing such node to transmit a multicast topology message. Accordingly, the topology eventually receives a topology multicast reply from each node of the network allowing such node to build a complete topology of the network.
Abstract:
Systems and methods for graphically depicting program depth are provided. Systems and methods can include generation of an edit pane and a ribbon column. The edit pane displays the program code, while a ribbon column displays the depth of an associated row of program code.
Abstract:
A system for sensing occurrences of hand washing events includes a dispenser of a hand sanitizing solution and a motion sensor that is coupled to the dispenser. The motion sensor is configured to sense vibrations of the dispenser. When at least a threshold amount of movement is sensed, logic is configured to analyze samples from the motion sensor in order to determine whether the sensed vibrations result from activation of the dispenser. If so, the dispenser activation is logged and reported for use within a system, such as a system for monitoring compliance with a hand washing policy.
Abstract:
A wireless mesh network has a plurality of nodes. One of the nodes, referred to as a “topology building node,” is configured to discover a topology of the network. In this regard, a multicast topology message is transmitted via at least one node of the network. Each node that receive such message transmits a topology multicast reply to the topology building node which adds the transmitting node to the topology if the transmitting node is not already identified by the topology. Upon adding a node to the topology, the topology building node transmits a topology multicast command to the added node thereby causing such node to transmit a multicast topology message. Accordingly, the topology eventually receives a topology multicast reply from each node of the network allowing such node to build a complete topology of the network.