Abstract:
A light conversion device includes a light-emitting unit, a photoelectric conversion unit, and an electroconductive bonding layer. Each of the light-emitting unit and the photoelectric conversion unit includes a first-type region and a second-type region opposite to the first-type region. The electroconductive bonding layer is disposed between the light-emitting unit and the photoelectric conversion unit for connecting the photoelectric conversion unit with the light-emitting unit. When the photoelectric conversion device is operated to receive a bias and an external light, the light-emitting unit generates a modulated light different from the external light in frequency.
Abstract:
An optical electrical device comprises a base and a transparent conductive structure on the base is disclosed. The base further comprises a light-emitting device and the transparent conductive structure comprises a transparent conductive oxide layer and a passivation layer on the transparent conductive oxide layer. The material of the transparent conductive oxide layer comprises transparent conductive metal oxide, such as ZnO. Furthermore, the transparent conductive metal oxide also comprises impurities, such as a carrier e.g. gallium.
Abstract:
A light conversion device includes a light-emitting unit, a photoelectric conversion unit, and an electroconductive bonding layer. Each of the light-emitting unit and the photoelectric conversion unit includes a first-type region and a second-type region opposite to the first-type region. The electroconductive bonding layer is disposed between the light-emitting unit and the photoelectric conversion unit for connecting the photoelectric conversion unit with the light-emitting unit. When the light conversion device is operated to receive a bias and an external light, the light-emitting unit generates a modulated light having a frequency different from that of the external light.
Abstract:
An optical electrical device comprises a base and a transparent conductive structure on the base is disclosed. The base further comprises a light-emitting device and the transparent conductive structure comprises a transparent conductive oxide layer and a passivation layer on the transparent conductive oxide layer. The material of the transparent conductive oxide layer comprises transparent conductive metal oxide, such as ZnO. Furthermore, the transparent conductive metal oxide also comprises impurities, such as a carrier e.g. gallium.