Abstract:
Compositions, systems, and methods are described for implanting silicon and/or silicon ions in a substrate, involving generation of silicon and/or silicon ions from corresponding silicon precursor compositions, and implantation of the silicon and/or silicon ions in the substrate.
Abstract:
An ion implantation system and process, in which the performance and lifetime of the ion source of the ion implantation system are enhanced, by utilizing isotopically enriched dopant materials, or by utilizing dopant materials with supplemental gas(es) effective to provide such enhancement.
Abstract:
An ion implantation system and process, in which the performance and lifetime of the ion source of the ion implantation system are enhanced, by utilizing isotopically enriched dopant materials, or by utilizing dopant materials with supplemental gas(es) effective to provide such enhancement.
Abstract:
Isotopically enriched silicon precursor compositions are disclosed, as useful in ion implantation to enhance performance of the ion implantation system, in relation to corresponding ion implantation lacking such isotopic enrichment of the silicon precursor composition. The silicon dopant composition includes at least one silicon compound that is isotopically enriched above natural abundance in at least one of 28Si, 29Si, and 30Si, and may include a supplemental gas including at least one of a co-species gas and a diluent gas. Dopant gas supply apparatus for providing such silicon dopant compositions to an ion implanter are described, as well as ion implantation systems including such dopant gas supply apparatus.
Abstract:
An ion implantation system and process, in which the performance and lifetime of the ion source of the ion implantation system are enhanced, by utilizing isotopically enriched dopant materials, or by utilizing dopant materials with supplemental gas(es) effective to provide such enhancement.
Abstract:
Ion implantation compositions, systems and methods are described, for implantation of dopant species. Specific selenium dopant source compositions are described, as well as the use of co-flow gases to achieve advantages in implant system characteristics such as recipe transition, beam stability, source life, beam uniformity, beam current, and cost of ownership.
Abstract:
Systems and processes for utilizing phosphorus fluoride in place of or in combination with, phosphine as a phosphorus dopant source composition, to reduce buildup of unwanted phosphorus deposits in ion implanter systems. The phosphorus fluoride may comprise PF3 and/or PF5. Phosphorus fluoride and phosphine may be co-flowed to the ion implanter, or each of such phosphorus dopant source materials can be alternatingly and sequentially flowed separately to the ion implanter, to achieve reduction in unwanted buildup of phosphorus solids in the implanter, relative to a corresponding process system utilizing only phosphine as the phosphorus dopant source material.
Abstract:
An ion implantation system and process, in which the performance and lifetime of the ion source of the ion implantation system are enhanced, by utilizing isotopically enriched dopant materials, or by utilizing dopant materials with supplemental gas(es) effective to provide such enhancement.
Abstract:
Isotopically enriched silicon precursor compositions are disclosed, as useful in ion implantation to enhance performance of the ion implantation system, in relation to corresponding ion implantation lacking such isotopic enrichment of the silicon precursor composition. The silicon dopant composition includes at least one silicon compound that is isotopically enriched above natural abundance in at least one of 28Si, 29Si, and 30Si, and may include a supplemental gas including at least one of a co-species gas and a diluent gas. Dopant gas supply apparatus for providing such silicon dopant compositions to an ion implanter are described, as well as ion implantation systems including such dopant gas supply apparatus.
Abstract:
A fluid supply package is described, which includes a fluid storage and dispensing vessel, and a fluid dispensing assembly coupled to the vessel and configured to enable discharge of fluid from the vessel under dispensing conditions, wherein the fluid supply package includes an informational augmentation device thereon, e.g., at least one of a quick read (QR) code and an RFID tag, for informational augmentation of the package. Process systems are described including process tools and one or more fluid supply packages of the foregoing type, wherein the process tool is configured for communicative interaction with the fluid supply package(s). Various communicative arrangements are described, which are usefully employed to enhance the efficiency and operation of process systems in which fluid supply packages of the foregoing type are employed.