Abstract:
A method of producing nano metal fluoride powders comprising the steps of mixing an aqueous or organic continuous phase comprising at least one metal cation salt with a hydrophilic or organic polymeric disperse phase forming a metal cation salt/polymer gel and then treating said gel with anhydrous hydrofluoric acid to convert said metal cation salt to metal cation fluoride and heat treating the gel at a temperature sufficient to drive off water and/or organics within the gel, leaving a residue of nano-size metal fluoride powder.
Abstract:
This invention discloses novel catalyzed surface composition altering formulations and methods and catalyzed surface coating formulations and methods, which contain one or more catalysts, along with optional other ingredients, wherein the catalysts serve to effect in situ chemical bonding reactions in that the catalysts function to initiate, to promote, to accelerate, and/or to increase the formation and yield of persistent, solid, corrosion-resistant, impact-resistant, wear-resistant, and/or non-stick surface compositions and surface coating films, which may exhibit pigmentation and other aesthetic features, and may be designed to be environmentally benign. This invention discloses novel means to alter the surface composition and to coat the surface of metals, plastics, fabrics, woods, and the like through catalytically supported chemical reactions that produce functionally improved surface performance for industrial, commercial, domestic and other purposes.
Abstract:
This invention discloses novel catalyzed lubricant additives and catalyzed lubricant systems, which contain one or more catalysts, along with optional other additives, wherein the catalysts serve to accelerate the rate and increase the yield of the lubricant bonding reactions between the catalyzed lubricants and the wear surfaces being lubricated.
Abstract:
This invention discloses novel catalyzed surface composition altering formulations and methods and catalyzed surface coating formulations and methods, which contain one or more catalysts, along with optional other ingredients, wherein the catalysts serve to effect in situ chemical bonding reactions in that the catalysts function to initiate, to promote, to accelerate, and/or to increase the formation and yield of persistent, solid, corrosion-resistant, impact-resistant, wear-resistant, and/or non-stick surface compositions and surface coating films, which may exhibit pigmentation and other aesthetic features, and may be designed to be environmentally benign. The disclosed formulation and methods may be used to alter the surface composition and to coat the surfaces of vehicles, such as aircraft, and to improve the anti-icing characteristics of the vehicle surfaces.