Abstract:
The present invention discloses a combination of two existing approaches for mineral analysis and makes use of the Similarity Metric Invention, that allows mineral definitions to be described in theoretical compositional terms, meaning that users are not required to find examples of each mineral, or adjust rules. This system allows untrained operators to use it, as opposed to previous systems, which required extensive training and expertise.
Abstract:
Mineral definitions each include a list of elements, each of the elements having a corresponding standard spectrum. To determine the composition of an unknown mineral sample, the acquired spectrum of the sample is sequentially decomposed into the standard spectra of the elements from the element list of each of the mineral definitions, and a similarity metric computed for each mineral definition. The unknown mineral is identified as the mineral having the best similarity metric.
Abstract:
Method and apparatus for analysis and display of fine grained mineral samples. A portion of the sample is illuminated with a charged particle beam. Emitted radiation is detected, and a sample emission spectrum is generated and fit with a plurality of standard emission spectra of minerals in a candidate mineral composition. A mineral composition whose emission spectrum best fits the sample emission spectrum is selected from a plurality of candidate mineral compositions. An assigned color is received for each mineral in the selected mineral composition, and the assigned colors are blended according to the proportion of each mineral in the selected mineral composition. An image pixel corresponding to the portion of the sample is rendered for display.
Abstract:
Optimized blending mode for mineralogy images. A luminosity value is determined for a pixel in a base layer or top layer mineralogy image. An image weighting value is determined from the luminosity value and an optional mixing parameter. A multiply value is determined by multiplying the base and top layer pixel values. An overlay value is determined from twice the multiply value if the value of one of the base layer or top layer pixel values is over a threshold, otherwise it is determined by inverting twice the product of the inverted top layer pixel value with the inverted base layer pixel value. A blended image pixel value is determined by adding the multiply value weighted with the image weighting value and the overlay value weighted with the inverted image weighting value.
Abstract:
The present invention discloses a combination of two existing approaches for mineral analysis and makes use of the Similarity Metric Invention, that allows mineral definitions to be described in theoretical compositional terms, meaning that users are not required to find examples of each mineral, or adjust rules. This system allows untrained operators to use it, as opposed to previous systems, which required extensive training and expertise.
Abstract:
An improved mineral analysis system includes mineral definitions that include not only characteristics of the minerals, but also variability in those characteristics. The variabilities allow the calculation of ranges of expected values for different quality of measurements, for example, for different numbers of x-ray counts. Match probabilities can therefore be calculated to more accurately determine the composition of a mineral sample.
Abstract:
Systems, computer program products and/or computer-implemented methods provided herein relate to synthetically generating a synthesized spectrum for a target composition. A system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise a determination component that determines a known composition having a same component as a target composition, and a generation component that, based on a synthesized spectrum of the known composition and on a first synthesized spectrum of the target composition, generates a second synthesized spectrum of the target composition.
Abstract:
Method and apparatus for analysis and display of fine grained mineral samples. A portion of the sample is illuminated with a charged particle beam. Emitted radiation is detected, and a sample emission spectrum is generated and fit with a plurality of standard emission spectra of minerals in a candidate mineral composition. A mineral composition whose emission spectrum best fits the sample emission spectrum is selected from a plurality of candidate mineral compositions. An assigned color is received for each mineral in the selected mineral composition, and the assigned colors are blended according to the proportion of each mineral in the selected mineral composition. An image pixel corresponding to the portion of the sample is rendered for display.
Abstract:
Optimized blending mode for mineralogy images. A luminosity value is determined for a pixel in a base layer or top layer mineralogy image. An image weighting value is determined from the luminosity value and an optional mixing parameter. A multiply value is determined by multiplying the base and top layer pixel values. An overlay value is determined from twice the multiply value if the value of one of the base layer or top layer pixel values is over a threshold, otherwise it is determined by inverting twice the product of the inverted top layer pixel value with the inverted base layer pixel value. A blended image pixel value is determined by adding the multiply value weighted with the image weighting value and the overlay value weighted with the inverted image weighting value.
Abstract:
Determining the composition of a mineral sample entails comparing measurements of a sample to mineral definitions and determining a similarity metric. The mineral definition includes a subspace of compositional values defined by end members. The similarity metric is related to a projection of the measured data point onto the subspace or onto an extension of the subspace.