Abstract:
Methods and systems for acquiring transmission electron microscope video data on a rolling-shutter detector at an enhanced frame rate and without temporal distortions are described. Also described are methods to enhance the dynamic range of image and diffraction data acquired using a transmission electron microscope. The disclosed methods and systems may also be applicable to photon detection and imaging systems.
Abstract:
Methods and systems for acquiring transmission electron microscope video data on a rolling-shutter detector at an enhanced frame rate and without temporal distortions are described. Also described are methods to enhance the dynamic range of image and diffraction data acquired using a transmission electron microscope. The disclosed methods and systems may also be applicable to photon detection and imaging systems.
Abstract:
In this invention, information of material composition, process conditions and candidates of crystal structure either known or imported from material database is used to determine sample stage tilt angle and working distance (WD). Under these determined tilt angle and WD, the intensity of the electrons emitted at different angles and with different energies is measured using a scanning electron microscope (SEM) system comprising: a use of materials database containing materials composition, formation process, crystal structure and its electron yield; a sample stage that is able to move, rotate and tilt; an processing section for calculating optimum working distance for an observation from material database and measurement condition; means for acquiring an image of crystal information of a desired area of a sample based on an image obtained from SEM observation.
Abstract:
There is provided a method of image acquisition capable of reducing the effects of diffraction contrast. This method of image acquisition is implemented in an electron microscope for generating electron microscope images with electrons transmitted through a sample. The method starts with obtaining the plural electron microscope images while causing relative variations in the direction of incidence of an electron beam with respect to the sample. An image is generated by accumulating the plural electron microscope images.
Abstract:
According to one embodiment, an inspection apparatus includes an irradiation device irradiating an inspection target substrate with multiple beams, a detector detecting each of a plurality of charged particle beams formed by charged particles emitted from the inspection target substrate as an electrical signal, and a comparison processing circuitry performing pattern inspection by comparing image data of a pattern formed on the inspection target substrate, the pattern being reconstructed in accordance with the detected electrical signals, and reference image data. The detector includes a plurality of detection elements that accumulate charges, and a detection circuit that reads out the accumulated charges. The plurality of detection elements are grouped into a plurality of groups. The detection circuit operates in a manner of, during a period in which the charged particle beams are applied to the detection elements included in one group, reading out the charges accumulated in the detection elements included in one or more other groups.
Abstract:
Multi-beam scanning electron microscope (SEM) inspection systems with dark field imaging capabilities are disclosed. An SEM inspection system may include an electron source and at least one optical device. The at least one optical device may be configured to produce a plurality of primary beamlets utilizing electrons provided by the electron source and deliver the plurality of primary beamlets toward a target. The apparatus may also include an array of detectors configured to receive a plurality of image beamlets emitted by the target in response to the plurality of primary beamlets and produce at least one dark field image of the target.
Abstract:
A Transmission Charged-Particle Microscope, comprising: A specimen holder, for holding a specimen; A source, for producing a beam of charged particles; An illuminator, for directing said beam so as to irradiate the specimen; An imaging system, for receiving a flux of charged particles transmitted through the specimen and directing it onto a spectroscopic apparatus comprising: A dispersing device, for dispersing said flux into an energy-resolved array of spectral sub-beams distributed along a dispersion direction; A detector, said detector comprising an assembly of sub-detectors arranged along said dispersion direction, whereby different sub-detectors are adjustable to have different detection sensitivities.
Abstract:
A charged particle beam device allowing an analysis position in a sample analyzable with an EBSD detector to be acquired beforehand, and allowing a sample to be adjusted to a desired analysis position in a short time. A charged particle beam device is provided with a charged particle source (111), a charged particle optical system (115), an EBSD detector (101), a sample stage (116), an image display unit (117) for displaying a portion of the sample observable with the EBSD detector and a non-observable portion of the sample such that said portions are distinguished from each other, an operation input unit (121) where a position to be observed by the EBSD detector is entered, and a control unit (118) for controlling a planar movement, an inclination movement and a rotation movement of the sample stage so as to allow the observation position entered from the operation input unit to be observed with the EBSD detector.
Abstract:
A focused ion beam apparatus including: a focused ion beam irradiation mechanism forming first and second cross-sections; a first image generation unit generating a first image, including a reflected electron image or a secondary electron image, of the first and second cross-sections; a second image generation unit generating a second image, including an EDS image or a secondary ion image, of the first and second cross-sections; and a control section causing the second image generation unit to generate the second image of the second cross-section, in a case where the first and second images of the first cross-section are acquired, the first image of the second cross-section is acquired, and the first image of the second cross-section includes a region different from a region representing a specific composition in the first image of the first cross-section.
Abstract:
The invention refers to a method and a charged particle beam device for analyzing an object using a charged particle beam interacting with the object. The object comprises a sample embedded in a resin. Interaction radiation in the form of cathodoluminescence light is detected for identifying areas in which the resin is arranged and in which the sample is arranged. Interaction particles are detected to identify particles within the resin and the sample for further analysis by using EDX analysis.