Abstract:
A polarization-maintaining optical fiber of the present invention includes a core, a pair of stress-applying parts provided on both sides of the core, and a cladding surrounding the core and the stress-applying parts, and is used in a wavelength range of 400 to 680 nm. The diameter of the cladding is 125 μm, the diameter of the stress-applying part is 33 to 37 μm, a distance between the pair of stress-applying parts is 8.6 to 15.4 μm, a relative refractive index difference between the core and the cladding is 0.35 to 0.45%, and a cut-off wavelength is less than or equal to 400 nm.
Abstract:
A low-loss optical fiber over wide wavelength range includes a transmission loss of less than or equal to 40 dB/km in a whole wavelength range of 400-1400 nm, and being manufactured by drawing an optical fiber preform including a core composed of a silica glass having a hydroxyl-group concentration of less than or equal to 1 ppm and a cladding composed of a silica glass having a fluorine concentration of more than or equal to 3.2 wt %.
Abstract:
A polarization maintaining fiber includes a core, paired stress applying parts disposed on both sides of the core, and a clad encompassing the core and the paired stress applying parts. When the polarization maintaining fiber has a fiber length of 2 m and a bend radius of 140 mm, the polarization maintaining fiber has a cut-off wavelength equal to or greater than 1.41 μm and less than 1.55 μm, and when the polarization maintaining fiber has a bend radius of 5 mm and twists at a rate of one rotation per 31.4 mm of fiber length, the polarization maintaining fiber has a bending loss equal to or less than 7 dB at a wavelength of 1.55 μm.
Abstract:
A polarization maintaining fiber includes a core, paired stress applying parts disposed on both sides of the core, and a clad encompassing the core and the paired stress applying parts. When the polarization maintaining fiber has a fiber length of 2 m and a bend radius of 140 mm, the polarization maintaining fiber has a cut-off wavelength equal to or greater than 1.20 μm and less than 1.31 μm. When the polarization maintaining fiber has a bend radius of 5 mm and twists at a rate of one rotation per 31.4 mm of fiber length, the polarization maintaining fiber has a bending loss equal to or less than 6.6 dB at a wavelength of 1.31 μm.
Abstract:
An optical fiber includes: a core that includes quartz glass doped with a core updopant; an inner cladding that includes quartz glass doped with a cladding updopant and a downdopant and that covers a circumferential surface of the core; and an outer cladding that includes quartz glass and that covers an outer circumferential surface of the inner cladding. A refractive index of the inner cladding is substantially equal to a refractive index of the outer cladding. The inner cladding contains the cladding updopant at a concentration such that a refractive index increase rate ascribed to the cladding updopant falls within a range of 0.25% to 0.5%.
Abstract:
A multicore polarization-maintaining fiber 10 includes a plurality of cores 11, a cladding 12 surrounding the plurality of cores 11, and a plurality of stress applying parts 15 provided sandwiching the plurality of cores 11 in a region surrounded by the outer circumferential surface of the cladding 12. The cross sectional area of the stress applying part 15 is greater than the cross sectional area of the core 11. Stress applying parts 15 of the plurality of stress applying parts 15 are disposed in a first direction, and stress applying parts 15 of the plurality of stress applying parts 15 are disposed in a second direction different from the first direction.
Abstract:
A polarization-maintaining optical fiber of the invention includes: a core; a pair of stress-applying parts disposed at both sides of the core at a distance; and a cladding coat that surrounds the core and the paired stress-applying parts. The maximum refractive index of the core is greater than each of maximum refractive indexes of a first cladding coat, a second cladding coat, and a third cladding coat. The maximum refractive index of the second cladding coat is lower than each of maximum refractive indexes of the first cladding coat and the third cladding coat. The coefficient of thermal expansion of each of stress-applying parts is greater than a coefficient of thermal expansion of the cladding coat. Each stress-applying part is provided to cut the second cladding coat at a position in a circumferential direction.
Abstract:
An optical fiber includes: a core that includes quartz glass doped with a core updopant; an inner cladding that includes quartz glass doped with a cladding updopant and a downdopant and that covers a circumferential surface of the core; and an outer cladding that includes quartz glass and that covers an outer circumferential surface of the inner cladding. A refractive index of the inner cladding is substantially equal to a refractive index of the outer cladding. The inner cladding contains the cladding updopant at a concentration such that a refractive index increase rate ascribed to the cladding updopant falls within a range of 0.25% to 0.5%.
Abstract:
A polarization maintaining fiber includes: a core; an inner cladding enclosing the core; two stress applying parts that sandwich the inner cladding therebetween; and an outer cladding enclosing the inner cladding and the two stress applying parts. Each of the two stress applying parts is depressed inward against the inner cladding, and the core has a flattened cross section having a long-axis that corresponds to a direction in which the two stress applying parts are aligned.