Abstract:
Methods and apparatuses are provided for evaluating or testing stiction in Microelectromechanical Systems (MEMS) devices utilizing a mechanized shock pulse generation approach. In one embodiment, the method includes the step or process of loading a MEMS device, such as a multi-axis MEMS accelerometer, into a socket provided on a Device-Under-Test (DUT) board. After loading the MEMS device into the socket, a series of controlled shock pulses is generated and transmitted through the MEMS device utilizing a mechanized test apparatus. The mechanized test apparatus may, for example, repeatedly move the DUT board over a predefined motion path to generate the controlled shock pulses. In certain cases, transverse vibrations may also be directed through the tested MEMS device in conjunction with the shock pulses. An output of the MEMS device is then monitored to determine whether stiction of the MEMS device occurs during each of the series of controlled shock pulses.
Abstract:
Microelectromechanical system (MEMS) devices and methods for forming MEMS devices are provided. The MEMS devices include a substrate, an anchored structure fixedly coupled to the substrate, and a movable structure resiliently coupled to the substrate. The movable structure has an opening formed therethrough and is positioned such that the anchored structure is at least partially within the opening and is in a capacitor-forming relationship with the movable structure. The movable structure comprises a movable structure finger extending only partially across the opening.
Abstract:
A sensor device includes a substrate having a port extending through it and a membrane including a first electrode spanning across the port. The port exposes the membrane to a pressure stimulus from an external environment. A second electrode is spaced apart from the first electrode by a gap having a first width. A control circuit applies an actuation voltage to move the second electrode closer to the first electrode and change the gap to a second width that is less than the first width. When the gap is set to the second width, the pressure sensor exhibits a greater sensitivity then when the gap is set to the first width. The membrane with the first electrode is movable in response to the pressure stimulus and the pressure stimulus is sensed as movement of the first electrode relative to the second electrode while the actuation voltage is applied.
Abstract:
A MEMS device includes a movable mass having a central region overlying a sense electrode and an opening in which a suspension structure and spring system are located. The suspension structure includes an anchor coupled to a substrate and rigid links extending from opposing sides of the anchor. The spring system includes a first and second spring heads coupled to each of the rigid links. A first drive spring is coupled to the first spring head and to the movable mass, and a second drive spring is coupled to the second spring head and to the movable mass. The movable mass is resiliently suspended above the surface of the substrate via the suspension structure and the spring system. The spring system enables drive motion of the movable mass in the drive direction and sense motion of the movable mass in a sense direction perpendicular to the surface of the substrate.
Abstract:
The embodiments described herein provide microelectromechanical systems (MEMS) devices, such as three-axis MEMS devices that can sense acceleration in three orthogonal axes (e.g., x-axis, y-axis, and z-axis). In general, the embodiments described can provide decoupling between the sense motions of all three axes from each other. This decoupling is facilitated by the use of an inner frame, and an outer frame, and the use of rotative spring elements combined with translatory spring elements that have asymmetric stiffness. Specifically, the translatory spring elements facilitate translatory motion in two directions (e.g., the x-direction and y-direction) and have an asymmetric stiffness configured to compensate for an asymmetric mass used to sense in the third direction (e.g., the z-direction).
Abstract:
A MEMS device includes a movable mass having a central region overlying a sense electrode and an opening in which a suspension structure and spring system are located. The suspension structure includes an anchor coupled to a substrate and rigid links extending from opposing sides of the anchor. The spring system includes a first and second spring heads coupled to each of the rigid links. A first drive spring is coupled to the first spring head and to the movable mass, and a second drive spring is coupled to the second spring head and to the movable mass. The movable mass is resiliently suspended above the surface of the substrate via the suspension structure and the spring system. The spring system enables drive motion of the movable mass in the drive direction and sense motion of the movable mass in a sense direction perpendicular to the surface of the substrate.
Abstract:
A micromechanical shock sensor includes a proof mass coupled to a surface of a substrate and a projection element extending laterally from the proof mass. The shock sensor further includes a latch mechanism and a retention anchor. The latch mechanism has a latch spring attached to the surface and a latch tip extending from a movable end of the latch spring. The retention anchor is attached to the surface and is located proximate the latch tip. The proof mass is configured for planar movement relative to the substrate when the proof mass is subjected to a force of at least a threshold magnitude. Movement of the proof mass in response to the force causes the latch tip to become retained between the projection element and the retention anchor to place the shock sensor in a latched state. The latched state may be detected by optical inspection, probe, or external readout.
Abstract:
A microelectromechanical systems (MEMS) device, such as a three-axis MEMS device can sense acceleration in three orthogonal axes. The MEMS device includes a single proof mass and suspension spring systems that movably couple the proof mass to a substrate. The suspension spring systems include translatory spring elements and torsion spring elements. The translatory spring elements enable translatory motion of the proof mass relative to the substrate in two orthogonal directions that are parallel to the plane of the MEMS device in order to sense forces in the two orthogonal directions. The torsion spring elements enable rotation of the proof mass about a rotational axis in order to sense force in a third direction that is orthogonal to the other two directions. The translatory spring elements have asymmetric stiffness configured to compensate for an asymmetric mass of the movable element used to sense in the third direction.
Abstract:
An inertial sensor (110) includes a drive system (118) configured to oscillate a drive mass (114) within a plane (24) that is substantially parallel to a surface (50) of a substrate (28). The drive system (118) includes first and second drive units (120, 122) having fixed fingers (134, 136) interleaved with movable fingers (130, 132) of the drive mass (114). At least one of the drive units (120) is located on each side (126, 128) of the drive mass (114). Likewise, at least one of the drive units (122) is located on each side (126, 128) of the drive mass (114). The drive units (122) are driven in phase opposition to the drive units (120) so that a levitation force (104) generated by the drive units (122) compensates for, or at least partially suppresses, a levitation force (100) generated by the drive units (120).
Abstract:
A MEMS sensor includes a movable element spaced apart from a surface of a substrate and fixed sense elements attached to the substrate, where all of the fixed sense elements are oriented parallel to one another. The movable element includes movable sense elements adjacent to the fixed sense elements. The movable element is adapted to undergo motion in response to mutually orthogonal forces, each of the forces being substantially parallel to the surface of the substrate. The fixed sense elements detect the motion of the movable element, and differential logic is applied to determine the magnitudes of the mutually orthogonal forces.