Abstract:
A MEMS device (40) includes a base structure (42) and a microstructure (44) suspended above the structure (42). The base structure (42) includes an oxide layer (50) formed on a substrate (48), a structural layer (54) formed on the oxide layer (50), and an insulating layer (56) formed over the structural layer (54). A sacrificial layer (112) is formed overlying the base structure (42), and the microstructure (44) is formed in another structural layer (116) over the sacrificial layer (112). Methodology (90) entails removing the sacrificial layer (112) and a portion of the oxide layer (50) to release the microstructure (44) and to expose a top surface (52) of the substrate (48). Following removal, a width (86) of a gap (80) produced between the microstructure (44) and the top surface (52) is greater than a width (88) of a gap (84) produced between the microstructure (44) and the structural layer (54).
Abstract:
A microelectromechanical systems (MEMS) device includes at least two rate sensors (20, 50) suspended above a substrate (30), and configured to oscillate parallel to a surface (40) of the substrate (30). Drive elements (156, 158) in communication with at least one of the rate sensors (20, 50) provide a drive signal (168) exhibiting a drive frequency. One or more coupling spring structures (80, 92, 104, 120) interconnect the rate sensors (20, 50). The coupling spring structures enable oscillation of the rate sensors (20, 50) in a drive direction dictated by the coupling spring structures. The drive direction for the rate sensors (20) is a rotational drive direction (43) associated with a first axis (28), and the drive direction for the rate sensors (50) is a translational drive direction (64) associated with a second axis (24, 26) that is perpendicular to the first axis (28).
Abstract:
An inertial sensor (110) includes a drive system (118) configured to oscillate a drive mass (114) within a plane (24) that is substantially parallel to a surface (50) of a substrate (28). The drive system (118) includes first and second drive units (120, 122) having fixed fingers (134, 136) interleaved with movable fingers (130, 132) of the drive mass (114). At least one of the drive units (120) is located on each side (126, 128) of the drive mass (114). Likewise, at least one of the drive units (122) is located on each side (126, 128) of the drive mass (114). The drive units (122) are driven in phase opposition to the drive units (120) so that a levitation force (104) generated by the drive units (122) compensates for, or at least partially suppresses, a levitation force (100) generated by the drive units (120).
Abstract:
An assembly (20) includes a MEMS die (22) having a pressure transducer device (40) formed on a substrate (44) and a cap layer (38). A packaging process (74) entails forming the device (40) on the substrate, creating an aperture (70) through a back side (58) of the substrate underlying a diaphragm (46) of the device (40), and coupling a cap layer (38) to the front side of the substrate overlying the device. A trench (54) is produced extending through both the cap layer and the substrate, and the trench surrounds a cantilevered platform (48) at which the diaphragm resides. The MEMS die is suspended above a substrate (26) so that a clearance space (60) is formed between the cantilevered platform and the substrate. The diaphragm is exposed to an external environment (68) via the aperture, the clearance space, and an external port.
Abstract:
An angular rate sensor includes a substrate, a drive mass flexibly coupled to the substrate, and a sense mass suspended above the substrate and flexibly coupled to the drive mass via flexible support elements. An electrode structure is mechanically coupled to, but electrically isolated from, the drive mass and is spaced apart from the substrate so that it is not in contact with the substrate. The electrode structure is configured to produce a signal that indicates movement of the sense mass relative to the electrode when the sensor is subjected to angular velocity. When the angular rate sensor experiences quadrature error, the drive mass, the sense mass, and the electrode structure move together relative to the sense axis. Since the sense mass and the electrode structure move together in response to quadrature error, there is little relative motion between the sense mass and the electrode structure so that quadrature error is largely eliminated.
Abstract:
An angular rate sensor (20) includes a single drive mass (24) and distributed sense masses (36, 38, 40, 42) located within a central opening (30) of the drive mass (24). The drive mass (24) is enabled to rotate around the Z-axis (64) under electrostatic stimulus. The sense masses (36, 38, 40, 42) are coupled to the drive mass by spring elements (44, 46, 48, 50) such that oscillatory rotary motion (90) of the drive mass imparts a linear drive motion (92, 94) on the sense masses. The distributed sense masses form two pairs of sense masses, where one pair senses X- and Z-axis angular rate and the other pair senses Y- and Z-axis angular rate. The sense masses are coupled to one another via a centrally located coupler element (34) to ensure that the sense masses of each pair are moving in anti-phase.
Abstract:
A MEMS device (20) includes a movable element (20) suspended above a substrate (22) by a spring member (34) having a spring constant (104). A spring softening voltage (58) is applied to electrodes (24, 26) facing the movable element (20) during a powered mode (100) to decrease the stiffness of the spring member (34) and thereby increase the sensitivity of the movable element (32) to an input stimulus (46). Upon detection of a stiction condition (112), the spring softening voltage (58) is effectively removed to enable recovery of the movable element (32) from the stiction condition (112). A higher mechanical spring constant (104) yields a stiffer spring (34) having a larger restoring force (122) in the unpowered mode (96) in order to enable recovery from the stiction condition (112). A feedback voltage (56) can be applied to feedback electrodes (28, 30) facing the movable element (32) to provide electrical damping.
Abstract:
A MEMS pressure sensor device is provided that can provide both a linear output with regard to external pressure, and a differential capacitance output so as to improve the signal amplitude level. These benefits are provided through use of a rotating proof mass that generates capacitive output from electrodes configured at both ends of the rotating proof mass. Sensor output can then be generated using a difference between the capacitances generated from the ends of the rotating proof mass. An additional benefit of such a configuration is that the differential capacitance output changes in a more linear fashion with respect to external pressure changes than does a capacitive output from traditional MEMS pressure sensors.