Abstract:
A method for performing an amplification reaction comprises the automated steps of combining a fluid sample together with one or more amplification reaction reagents in a reaction receptacle using a first automated pipettor, thereby forming a reaction mixture, transporting the reaction receptacle to a first, predetermined location of a centrifuge, subjecting the reaction mixture to centrifugation, after subjecting the reaction mixture to centrifugation, removing the reaction receptacle from a second, predetermined location of the centrifuge different from the first predetermined location and placing the reaction receptacle in a thermocycler, and in the thermocycler, subjecting the reaction mixture to one or more temperature cycles.
Abstract:
A mechanism for providing selective access to one of a plurality of containers within a substantially enclosed housing comprises a movable carrier within the housing, a container access opening formed in a top wall of the housing, and a shutter plate attached to the top wall of the housing. The carrier is configured to hold and carry the plurality of containers. The container access opening is formed at a position on a path traversed by the plurality of containers carried on the carrier so that movement of the carrier sequentially places each of the plurality of containers beneath the container access opening. The shutter plate is pivotable between a first position covering the container access opening to thereby prevent access to the container located beneath the opening and a second position exposing the opening to thereby allow access to the container located beneath the opening.
Abstract:
An apparatus for performing nucleic acid amplification reactions includes a thermally-conductive receptacle holder with multiple receptacle wells. Each well has a through-hole extending from an inner surface of the well to an outer surface of the holder. A cover is rotatable between an open position and a closed position relative to the holder and is configured to exert a force onto any receptacles in the wells when the cover is in the closed position. The apparatus includes multiple optical fibers, and each of the optical fibers provides optical communication between one of the wells and an excitation signal source and/or an emission signal detector. A thermal element is positioned between a thermally-conductive support and the receptacle holder.
Abstract:
A system for monitoring reactions with a plurality of receptacle vessels that includes: an incubator; a movable receptacle carrier contained within a temperature-controlled chamber of the incubator; one or more fixed fluorometers configured to measure a fluorescent emission and positioned with respect to the receptacle carrier to measure fluorescent emissions from receptacle vessels carried on the receptacle carrier into an operative position with respect to each fluorometer; one or more fluorescent reference standards mounted on the receptacle carrier; and a controller configured to control operation of the receptacle carrier and the one or more fluorometers to determine if a fluorescent emission intensity of one or more of the fluorescent reference standards deviates from an expected fluorescent emission intensity.
Abstract:
A method of measuring a time-varying signal emission, the method including subjecting the contents of a receptacle to a thermal cycling process. During the thermal cycling process, measuring a signal emission from the contents of the receptacle at regular time intervals and recording the measured signal emission and a time stamp at each time interval. Also during the thermal cycling process, determining a temperature of the thermal cycling process at regular time intervals and recording the determined temperature and a time stamp at each time interval. The measured signal emissions are synchronized with a specific temperature of the thermal cycling process by comparing the time stamps of the measured emission signals with the time stamps of the determined temperatures.
Abstract:
A System and method for self-checking a fluorometer for failure or deteriorated performance includes fluorescent reference standards mounted on a support to move with respect to one or more fixed fluorometers. The intensity of the fluorescent emission of the fluorescent reference standard is initially measured with the fluorometer, and, after a prescribed interval of usage of the fluorometer, a test measurement of the intensity of the fluorescent emission of the fluorescent standard is taken with the fluorometer. The test measurement is compared to the initial measurement, and failure or deteriorated performance of the fluorometer is determined based on a deviation of the test measurement from the initial measurement.
Abstract:
An automated method for analyzing a plurality of samples within a housing of a self-contained system. The system is loaded with a plurality of samples, after which a first assay is performed on a first sample subset and a second assay performed on a second sample subset. The two assays include exposing the samples to a target capture reagent having a solid support for directly or indirectly immobilizing a target nucleic acid that may be present in one or more of the samples. The two assays may be performed with the same or different target capture reagents and target nucleic acids, but the receptacles for performing the exposing step have substantially identical geometries. Following the exposing step, an amplification reaction for amplifying a region of the target nucleic acid is performed with each sample. The amplification reactions of the two assays are performed in receptacles having different geometries.
Abstract:
Optical reference devices for calibrating or monitoring the performance of an optical measurement device, such as a fluorometer, are made from thermoplastics from the polyaryletherketone (PAEK) family of semi-crystalline thermoplastics, including polyether ether ketone (PEEK). The reference device may be made as a master reference device having a known emission output—as determined by a standard optical measurement device—that is used to calibrate other optical measurement devices against the standard. The reference device may be made in the shape of a receptacle vial so that the reference device can be placed in the receptacle holding structure of an instrument in which the optical measurement device is installed and used to calibrate or monitor the optical measurement device within the instrument. The reference device may be part of the probe of a pipettor or pick and place mechanism or it may be a cap that can be secured to the end of such a probe.
Abstract:
A structure for holding sample-containing receptacles includes a cover with holes formed therein through which the receptacles can be accessed with a substance transfer mechanism, such as a robotic pipettor. When the transfer mechanism is inserted into and then withdrawn from a receptacle, a string of viscous material may be suspended from the mechanism. A viscous string removal element adjacent each opening engages the string of viscous material and dislodges the string from the mechanism when the mechanism moves in a prescribed path with respect to the removal element. A sample rack configured to hold receptacles and to be inserted into the structure below the cover includes a sample rack having receptacle-receiving pockets, each with a resilient element and a positioning feature for holding receptacles of varying sizes in a predetermined position within the receptacle receiving pocket, and a cover including features for preventing a receptacle from being pulled out of its receptacle-receiving pocket when the transfer mechanism is withdrawn from the receptacle.
Abstract:
System, apparatus, and method for cycling the temperature of at least one receptacle holder that is adapted for use in an automated instrument capable of performing nucleic acid-based amplification tests. Also provided are methods for conducting automated, random-access incubation processes using the same.