Abstract:
The present disclosure involves occasions where precise two-dimensional motion takes place, and is applicable to XY motion stages for precise displacement compensation. The present disclosure particularly involves a stiffness-frequency adjustable XY micromotion stage based on stress stiffening, which includes X-direction and Y-direction motion sub-stages and corresponding drivers and a micromotion working table. The micromotion stage uses membrane sets that have tension levels thereof adjusted by bolts as a flexible hinge, so as to achieve independent adjustment of the vibration frequency of the XY micromotion stage. The present disclosure implements the foregoing configuration based on prestressed membrane, so the frequency is adjustable. The inherent frequency of the micromotion stage can be adjusted before or during operation according to various working conditions and driving frequency. The two feed motion direction are perpendicular so as to prevent the micromotion working table from coupling during two-dimensional motion.
Abstract:
The present disclosure involves occasions where precise two-dimensional motion takes place, and is applicable to XY motion stages for precise displacement compensation. The present disclosure particularly involves a stiffness-frequency adjustable XY micromotion stage based on stress stiffening, which includes X-direction and Y-direction motion sub-stages and corresponding drivers and a micromotion working table. The micromotion stage uses membrane sets that have tension levels thereof adjusted by bolts as a flexible hinge, so as to achieve independent adjustment of the vibration frequency of the XY micromotion stage. The present disclosure implements the foregoing configuration based on prestressed membrane, so the frequency is adjustable. The inherent frequency of the micromotion stage can be adjusted before or during operation according to various working conditions and driving frequency. The two feed motion direction are perpendicular so as to prevent the micromotion working table from coupling during two-dimensional motion.
Abstract:
The present disclosure relates to a macro-micro composite grating ruler measuring system based on conversion and amplification in vertical and horizontal directions. The macro-micro composite grating ruler includes a grating ruler, a macro-micro reading system moving with respect to the grating ruler, and a counting and image processing module. The macro-micro reading system faces grating strip datum and is parallel to the grating ruler. The system further includes a measuring reference line. The measuring reference line obtained by the image sensor together with grating strips forms an image overlap in the counting and image processing module. The measuring reference line and the grating strip jointly include an angle θ. With the foregoing configuration, the present invention is compatible with the existing incremental grating rulers and absolute grating rulers, so is highly applicable.
Abstract:
The present disclosure relates to a macro-micro composite grating ruler measuring system based on conversion and amplification in vertical and horizontal directions. The macro-micro composite grating ruler includes a grating ruler, a macro-micro reading system moving with respect to the grating ruler, and a counting and image processing module. The macro-micro reading system faces grating strip datum and is parallel to the grating ruler. The system further includes a measuring reference line. The measuring reference line obtained by the image sensor together with grating strips forms an image overlap in the counting and image processing module. The measuring reference line and the grating strip jointly include an angle θ. With the foregoing configuration, the present invention is compatible with the existing incremental grating rulers and absolute grating rulers, so is highly applicable.
Abstract:
Various embodiments relate to a method of planning asymmetric variable acceleration based on non-linear finite element dynamic response simulation. The planning method involves obtaining solution of a non-linear finite element model positioning process that has kinematic freedom and adopts a parameterized motion function as its boundary condition; determining whether post-driving amplitude of an execution end satisfies positioning precision, and if it does not, continuing getting solution, and if it is, adjusting an energy decay time; determining whether a target response time is minimum, and if it is, verifying the set motion parameter as optimal, and if it is not, calculating a gradient and a step size of the motion parameter, and resetting the motion parameter for solution. The present disclosure utilizes this method to plan high-speed high-acceleration motion for mechanisms that are affected by non-linear factors such as large flexible deformation and require precise positioning.