Abstract:
A reactor system and a process for carrying out the methanol cracking and reverse water gas shift reaction of a feedstock comprising methanol to synthesis gas are provided, where the heat for the endothermic methanol cracking and reverse water gas shift reaction is provided by resistance heating.
Abstract:
A reactor system and a process for carrying out the ammonia cracking reaction of a feed gas comprising ammonia to hydrogen are provided, where the heat for the endothermic ammonia cracking reaction is provided by resistance heating.
Abstract:
A system for production of a synthesis gas, including: a synthesis gas generation reactor arranged for producing a first synthesis gas from a hydrocarbon feed stream; a post converter including a catalyst active for catalyzing steam methane reforming, methanation and reverse water gas shift reactions; the post converter including a conduit for supplying a CO2 rich gas stream into a mixing zone of the post converter, where the CO2 rich gas stream in the conduit upstream the mixing zone is in heat exchange relationship with gas flowing over the catalyst downstream the mixing zone; a pipe combining the at least part of the first synthesis gas and the CO2 rich gas stream to a mixed gas, in a mixing zone being upstream the catalyst; wherein the post converter further includes an outlet for outletting a product synthesis gas from the post converter. Also, a corresponding process.
Abstract:
The invention relates to a process for the production of synthesis gas from tail gas including autothermal reforming and shifting a portion of autothermally reformed process gas in order to produce a product stream of synthesis gas richer in carbon monoxide.
Abstract:
A reactor system for carrying out an endothermic reaction of a feed gas, including: a structured catalyst arranged for catalyzing the endothermic reaction of a feed gas, the structured catalyst including a macroscopic structure of electrically conductive material, the macroscopic structure supporting a ceramic coating, wherein the ceramic coating supports a catalytically active material; a pressure shell housing the structured catalyst; heat insulation layer between the structured catalyst and the pressure shell; at least two conductors electrically connected to the electrically conductive material and to an electrical power supply placed outside the pressure shell, wherein the electrical power supply is dimensioned to heat at least part of said structured catalyst to a temperature of at least 200° C. by passing an electrical current through the electrically conductive material. Also, a process for performing an endothermic reaction of a feed gas.
Abstract:
A reactor system and a process for carrying out reverse water gas shift reaction of a feedstock comprising CO2 and H2 to a first product gas comprising CO are provided, where a methanation reaction take place in parallel to the reverse water gas shift reaction, and where the heat for the endothermic reverse water gas shift reaction is provided by resistance heating.
Abstract:
A plant, such as a hydrocarbon plant, is provided, which has a syngas stage for syngas generation and a synthesis stage where the syngas is synthesized to produce syngas derived product, such as hydrocarbon product. The plant makes effective use of various streams; in particular CO2 and H2. The plant does not comprise an external feed of hydrocarbons. A method for producing a product stream, such as a hydrocarbon product stream is also provided.
Abstract:
A tube heat exchange reactor for carrying out an endothermic catalytic reaction. The tube heat exchange reactor includes: an outer tube with a first and a second end, where the first end is an inlet end and where the second end is a closed end, an inner tube coaxially arranged within the outer tube and spaced apart from the outer tube, where at least a part of the inner tube holds a bed of catalyst material susceptible for induction heating and where the inner tube has an inlet end and an outlet end, an induction coil placed within the annular space confined between the outer and the inner tube, and a power source arranged to supply alternating current to the induction coil in order to generate an alternating magnetic field within at least a part of the inner tube.
Abstract:
Method for the preparation of synthesis gas by combining electrolysis of water, autothermal reforming and heat exchange reforming of a hydrocarbon feed stock.
Abstract:
A process for the conversion of natural gas to hydrocarbon products by (a) mixing natural gas with a small amount of hydrogen, (b) purifying the mixture from (a) to obtain purified natural gas, (c) mixing the purified natural gas from (b) with steam to obtain the desired steam-to-carbon (S/C) ratio, (d) mixing the natural gas/steam mixture from (c) with tail gas from the downstream Fischer-Tropsch synthesis and converting the mixture into a synthesis gas, (e) cooling the synthesis gas from (d) and condensing out the process water from it, (f) leading the dry synthesis gas from (e) to a carbon dioxide removal section, and (g) sending the CO2-deprived synthesis gas to the downstream Fischer-Tropsch synthesis unit as a make-up gas. The carbon dioxide removed from the syngas in step (f) is either vented or kept for other use without any part of it being recycled.