Abstract:
Process for the preparation of a methanol product comprising the steps of a) providing a first process stream consisting essentially of carbon dioxide; b) providing a second process stream consisting of hydrogen by electrolyzing water in an electrolysis unit; c) mixing the first and second process in amount to obtain a methanol synthesis gas with a mole ratio of H2 and CO2 of between 2.5 and 3.5; d) catalytic converting the methanol synthesis gas into raw methanol in at least one methanol reactor; e) purifying the raw methanol in a distillation unit; and recovering waste heat generated in the electrolysis unit in step (b) by transferring the waste heat to a circulating heat transfer medium by indirect heat exchange with the waste heat and by indirect heat exchange of the heated heat transfer medium with steam used for the distillation of the raw methanol, wherein the heated transfer medium is compressed upstream the indirect heat exchange with steam.
Abstract:
Process for the preparation of a methanol product comprising the steps of a) providing a first process stream consisting essentially of carbon dioxide; b) providing a second process stream consisting of hydrogen by electrolyzing water in an electrolysis unit; c) mixing the first and second process in amount to obtain a methanol synthesis gas with a mole ratio of H2 and CO2 of between 2.5 and 3.5; d) catalytic converting the methanol synthesis gas into raw methanol in at least one methanol reactor; e) purifying the raw methanol in a distillation unit; and recovering waste heat generated in the electrolysis unit in step (b) by transferring the waste heat to a circulating heat transfer medium by indirect heat exchange with the waste heat and by indirect heat exchange of the heated heat transfer medium with steam used for the distillation of the raw methanol, wherein the heated transfer medium is compressed upstream the indirect heat exchange with steam.
Abstract:
A reactor system and a process for carrying out reverse water gas shift reaction of a feedstock comprising CO2 and H2 to a first product gas comprising CO are provided, where a methanation reaction take place in parallel to the reverse water gas shift reaction, and where the heat for the endothermic reverse water gas shift reaction is provided by resistance heating.
Abstract:
A process for the conversion of natural gas to hydrocarbon products by (a) mixing natural gas with a small amount of hydrogen, (b) purifying the mixture from (a) to obtain purified natural gas, (c) mixing the purified natural gas from (b) with steam to obtain the desired steam-to-carbon (S/C) ratio, (d) mixing the natural gas/steam mixture from (c) with tail gas from the downstream Fischer-Tropsch synthesis and converting the mixture into a synthesis gas, (e) cooling the synthesis gas from (d) and condensing out the process water from it, (f) leading the dry synthesis gas from (e) to a carbon dioxide removal section, and (g) sending the CO2-deprived synthesis gas to the downstream Fischer-Tropsch synthesis unit as a make-up gas. The carbon dioxide removed from the syngas in step (f) is either vented or kept for other use without any part of it being recycled.
Abstract:
A process for the conversion of natural gas to hydrocarbon products comprises the steps of (a) mixing natural gas with a small amount of hydrogen, (b) purifying the mixture from (a) in a feed purification section to obtain purified natural gas, (c) mixing the purified natural gas from (b) with steam to obtain the desired steam-to-carbon (S/C) ratio, (d) mixing the natural gas/steam mixture from (c) with the tail gas from the downstream Fischer-Tropsch synthesis or a part thereof in a syngas section and converting the mixture into a synthesis gas, (e) cooling the synthesis gas from (d) and condensing out the process water from it, (f) leading the dry synthesis gas from (e) to a carbon dioxide removal section, where the CO2 is removed from the synthesis gas, and (g) sending the CO2-deprived synthesis gas to the downstream Fischer-Tropsch synthesis unit as a make-up gas. The carbon dioxide removed from the syngas in step (f) is either vented or kept for other use without any part of it being recycled.