Abstract:
An electrochromic system and method for controlling photochromic darkening of an electrochromic device, the system including an EC device, a control unit, a voltage detector, and a power supply. The EC device includes a working electrode, a counter electrode, and a solid-state polymer electrolyte disposed therebetween. The control unit is configured to control a sweep voltage applied between the working and counter electrodes, such that the sweep voltage is applied when an open circuit voltage (OCV) between the working and counter electrodes is less than a threshold voltage.
Abstract:
An electrochromic system and method for controlling photochromic darkening of an electrochromic device, the system including an EC device, a control unit, a voltage detector, and a power supply. The EC device includes a working electrode, a counter electrode, a solid-state polymer electrolyte disposed therebetween, and a Bragg reflector configured to selectively reflect UV radiation away from the working electrode. The control unit is configured to control a sweep voltage applied between the working and counter electrodes, such that the sweep voltage is applied when an open circuit voltage (OCV) between the working and counter electrodes is less than a threshold voltage.
Abstract:
An electrochromic system and method for controlling photochromic darkening of an electrochromic device, the system including an EC device, a control unit, a voltage detector, and a power supply. The EC device includes a working electrode, a counter electrode, a solid-state polymer electrolyte disposed therebetween, and an ionically conductive and electrically insulating protective layer disposed between the electrolyte and the working electrode. The control unit is configured to control a sweep voltage applied between the working and counter electrodes, such that the sweep voltage is applied when an open circuit voltage (OCV) between the working and counter electrodes is less than a threshold voltage.
Abstract:
An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant. The electrochromic device also includes nanoparticles containing one or more transparent conducting oxide (TCO), a solid state electrolyte, a counter electrode, and at least one protective layer to prevent degradation of the one or more nanostructured transition metal oxide bronze. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.