Abstract:
An electrochromic (EC) privacy window includes an EC pane unit including a first EC device having a bright state and a dark state, and a privacy device facing the EC pane unit and having a bright state and a privacy state configured to attenuate visible radiation transmitted through the window. In some embodiments, when the privacy device is in the privacy state, the window has transmitted haze of greater that 80%. In other embodiments, when the privacy device is in the privacy state and the first EC device is in the dark state, the window has a visible transmittance of about 0.1% or less.
Abstract:
An electrochromic device may include a working electrode that includes a high temperature stable material and nanoparticles of an active core material, a counter electrode, and an electrolyte deposited between the working electrode and the counter electrode. The high temperature stable material may prevent fusing of the nanoparticles of the active core material at temperatures up to 700° C. The high temperature stable material may include tantalum oxide. The high temperature stable material may form a spherical shell or a matrix around the nanoparticles of the active core material. A method of forming an electrochromic device may include depositing a working electrode onto a first substrate, in which the working electrode comprises a high temperature stable material and nanoparticles of an active core material, and heat tempering the working electrode and the first substrate.
Abstract:
An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant. The electrochromic device also includes nanoparticles containing one or more transparent conducting oxide (TCO), a solid state electrolyte, a counter electrode, and at least one protective layer to prevent degradation of the one or more nanostructured transition metal oxide bronze. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.
Abstract:
An electrochromic device and method, the device including: a first transparent conductor layer; a working electrode disposed on the first transparent conductor layer and including nanostructures; a counter electrode; a solid state electrolyte layer disposed between the counter electrode and the working electrode; and a second transparent conductor layer disposed on the counter electrode. The nanostructures may include transition metal oxide nanoparticles and/or nanocrystals configured to tune the color of the device by selectively modulating the transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.
Abstract:
An electrochromic device and method, the device including a light transmissive first substrate, a working electrode disposed on the first substrate, a counter electrode, a solid state electrolyte layer disposed between the counter electrode and the working electrode, a light transmissive second substrate disposed on the counter electrode, and a Bragg reflector configured to selectively reflect UV radiation away from the working electrode.
Abstract:
An electrochromic device and method, the device including: a first transparent conductor layer; a working electrode disposed on the first transparent conductor layer and including nanostructures; a counter electrode; a solid state electrolyte layer disposed between the counter electrode and the working electrode; and a second transparent conductor layer disposed on the counter electrode. The nanostructures may include transition metal oxide nanoparticles and/or nanocrystals configured to tune the color of the device by selectively modulating the transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.