Abstract:
A coating apparatus includes a first vaporizer configured to vaporize a first precursor material, a second vaporizer configured to vaporize a second precursor material in series with the first vaporizer, at least one pyrolysis chamber configured to further process vaporized precursor material from one of the first vaporizer or second vaporizer, and a deposition chamber configured to receive the processed precursor materials.
Abstract:
A method for optimizing a cracking efficiency with which a pyrolysis tube of a deposition apparatus cracks a precursor material into reactive species is disclosed, including measuring an input pressure at an entrance to the pyrolysis tube, outside of the pyrolysis tube; measuring an output pressure at an exit from the pyrolysis tube, outside of the pyrolysis tube; measuring a pyrolysis temperature within the pyrolysis tube; calculating a cracking efficiency based on the input pressure, the output pressure and the pyrolysis temperature; and determining an adjustment to be made to at least one of the input pressure, the output pressure and the pyrolysis temperature to increase the cracking efficiency.
Abstract:
A modular multilayer deposition system includes a plurality of modular deposition chambers, including at least one parylene deposition chamber and at least one ALD deposition chamber. The parylene deposition chamber is connected in series with the ALD deposition chamber. Substrates are automatically moved from within the parylene deposition chamber to within the ALD deposition chamber or from within the ALD deposition chamber to the parylene deposition chamber.
Abstract:
Protective coatings with one or more additives dispersed therethrough are disclosed. A protective coating may comprise a poly(p-xylylene), or parylene. An additive may be configured to cause the protective coating to contrast (e.g., visibly, etc.) with features or components that are exposed beyond a periphery of the protective coating. Additives that provide other characteristics are also disclosed. In addition, methods for applying protective coatings according to this disclosure are disclosed, as are inspection methods.
Abstract:
Protective coatings are disclosed that are configured to cover electronic components within an electronic device, while enabling electrical connections to be established with electrical contacts that are covered by the protective coatings. Such a protective coating may comprise a parylene, or a poly(p-xylylene), protective coating that has a thickness of at least 0.1 μm and at most about 2 μm. Electronic devices that include such a protective coating are also disclosed.
Abstract:
Protective coatings with one or more additives dispersed therethrough are disclosed. A protective coating may comprise a poly(p-xylylene), or parylene. An additive may be configured to cause the protective coating to contrast (e.g., visibly, etc.) with features or components that are exposed beyond a periphery of the protective coating. Additives that provide other characteristics are also disclosed. In addition, methods for applying protective coatings according to this disclosure are disclosed, as are inspection methods.
Abstract:
Protective coatings are disclosed that are configured to cover electronic components within an electronic device, while enabling electrical connections to be established with electrical contacts that are covered by the protective coatings. Such a protective coating may comprise a parylene, or a poly(p-xylylene), protective coating that has a thickness of at least 0.1 μm and at most about 2 μm. Electronic devices that include such a protective coating are also disclosed.
Abstract:
A protective coating for an electronic device, such as a coating that is substantially impermeable to moisture and oxygen, comprises an ultra-thin film comprising a plurality of sub-layers formed by atomic layer deposition (ALD) processes. Low temperature ALD processes may be used to form the sub-layers of the protective coating. The density of the protective film may be enhanced with energy, to which the protective coating or sub-layers thereof may be exposed during deposition or intermittently during the deposition process. ALD apparatuses that are equipped to perform the disclosed processes are also disclosed, as are electronic devices that include the disclosed protective coatings.
Abstract:
A method for optimizing a cracking efficiency with which a pyrolysis tube of a deposition apparatus cracks a precursor material into reactive species is disclosed, including measuring an input pressure at an entrance to the pyrolysis tube, outside of the pyrolysis tube; measuring an output pressure at an exit from the pyrolysis tube, outside of the pyrolysis tube; measuring a pyrolysis temperature within the pyrolysis tube; calculating a cracking efficiency based on the input pressure, the output pressure and the pyrolysis temperature; and determining an adjustment to be made to at least one of the input pressure, the output pressure and the pyrolysis temperature to increase the cracking efficiency.
Abstract:
A method for optimizing a cracking efficiency with which a pyrolysis tube of a deposition apparatus cracks a precursor material into reactive species is disclosed, including measuring an input pressure at an entrance to the pyrolysis tube, outside of the pyrolysis tube; measuring an output pressure at an exit from the pyrolysis tube, outside of the pyrolysis tube; measuring a pyrolysis temperature within the pyrolysis tube; calculating a cracking efficiency based on the input pressure, the output pressure and the pyrolysis temperature; and determining an adjustment to be made to at least one of the input pressure, the output pressure and the pyrolysis temperature to increase the cracking efficiency.