Abstract:
A method for the manufacture of a composite laminate assembly that includes decorative, functional, security, reflective, diffractive, holographic elements for liquid transfer onto the surface of a variety of base materials or work piece having a flat or complex three dimensional shape.
Abstract:
A laminated core stock sheet for use in a composite laminate assembly configured for being separated into plural individual cards is provided. The laminated core stock sheet includes a core substrate layer and an intermediate filmic layer coupled to the core substrate layer. The intermediate filmic layer includes plural conductive bodies spaced apart from each other that provide at least one of a security feature, a decorative feature, or other functional feature of the individual cards. The core substrate layer and the intermediate filmic layer are configured to be coupled with another laminated core stock sheet that may or may not include the intermediate filmic layer to form the composite laminate assembly configured for being separated into the individual cards.
Abstract:
A seamless, embossed or cast substrate is formed using a seamless sleeve having a seamless surface relief formed thereon and configured to slide over an cylindrical base in an embossing or casting assembly. The substrate is a flat web, foil, or film of, for example, paper, polyester, polypropylene, metal or other elongated flat material. The surface relief can be applied through interfering ablation, non-interfering ablation, ink jet printing, or other techniques wherein a seamless surface relief is formed onto the seamless sleeve. A method of making a seamless, embossed or cast substrate includes expanding a diameter of a seamless sleeve having a seamless surface relief formed thereon, sliding the expanded seamless sleeve onto a cylindrical base, allowing the diameter of the seamless sleeve to contract around the cylindrical base, and conveying a substrate through the embossing or casting assembly and embossing or casting the seamless surface relief into the substrate.
Abstract:
A transferable film includes a carrier layer and an intermediate film portion. The carrier layer is configured to receive one or more additional layers and to be releasable from the one or more additional layers temporally proximate to an application of the transferable film to an object. The intermediate film portion includes a readable conductive image portion and is configured for application thereto of an adhesive layer. The intermediate film portion is configured to be interposed between the carrier layer and the adhesive layer, and the adhesive layer configured to adhere to the object for the application of the transferable film to the object.
Abstract:
A front panel overlay having a plurality of layers and one or more logic circuits incorporated therein is disclosed. One of the plurality of layers may have a first electrical contact and another one of the plurality of layers may have a second electrical contact. The one or more logic circuits may be incorporated at least indirectly within the plurality of layers and may be activated when the first electrical contact completes an electrical circuit with the second electrical contact.
Abstract:
A laminated core stock sheet for use in a composite laminate assembly configured for being separated into plural individual cards is provided. The laminated core stock sheet includes a core substrate layer and an intermediate filmic layer coupled to the core substrate layer. The intermediate filmic layer includes plural conductive bodies spaced apart from each other that provide at least one of a security feature, a decorative feature, or other functional feature of the individual cards. The core substrate layer and the intermediate filmic layer are configured to be coupled with another laminated core stock sheet that may or may not include the intermediate filmic layer to form the composite laminate assembly configured for being separated into the individual cards.
Abstract:
A filmic circuit includes a circuit portion and a carrier layer. The circuit portion includes a logic circuit that includes, for example, plural logic gates configurable to receive an input and provide a corresponding logical output. The carrier layer is configured as a film. The circuit portion is affixed directly to the carrier layer or to an upper coat disposed adjacent to the carrier layer, and the carrier layer is configured to be releasable from the circuit portion after the filmic circuit assembly is affixed to a target. The circuit portion is configured to receive an adhesive layer configured to affix the filmic circuit assembly to the target.
Abstract:
A transferable film includes a carrier layer and an intermediate film portion. The carrier layer is configured to receive one or more additional layers and to be releasable from the one or more additional layers temporally proximate to an application of the transferable film to an object. The intermediate film portion includes a readable conductive image portion and is configured for application thereto of an adhesive layer. The intermediate film portion is configured to be interposed between the carrier layer and the adhesive layer, and the adhesive layer configured to adhere to the object for the application of the transferable film to the object.
Abstract:
A seamless, embossed or cast substrate is formed using a seamless sleeve having a seamless surface relief formed thereon and configured to slide over an cylindrical base in an embossing or casting assembly. The substrate is a flat web, foil, or film of, for example, paper, polyester, polypropylene, metal or other elongated flat material. The surface relief can be applied through interfering ablation, non-interfering ablation, ink jet printing, or other techniques wherein a seamless surface relief is formed onto the seamless sleeve. A method of making a seamless, embossed or cast substrate includes expanding a diameter of a seamless sleeve having a seamless surface relief formed thereon, sliding the expanded seamless sleeve onto a cylindrical base, allowing the diameter of the seamless sleeve to contract around the cylindrical base, and conveying a substrate through the embossing or casting assembly and embossing or casting the seamless surface relief into the substrate.
Abstract:
A front panel overlay having a plurality of layers and one or more logic circuits incorporated therein is disclosed. One of the plurality of layers may have a first electrical contact and another one of the plurality of layers may have a second electrical contact. The one or more logic circuits may be incorporated at least indirectly within the plurality of layers and may be activated when the first electrical contact completes an electrical circuit with the second electrical contact.