Force sensing device and a force sensing system

    公开(公告)号:US10775254B2

    公开(公告)日:2020-09-15

    申请号:US16006835

    申请日:2018-06-12

    Applicant: IMEC VZW

    Abstract: A force sensing device comprises: a membrane (120), which is configured to deform upon receiving a force; a first Mach Zehnder-type interferometer device (110); a second Mach Zehnder-type interferometer device (130), wherein a first measurement propagation path (114) of the first Mach Zehnder-type interferometer device (110) and a second measurement propagation path (134) of the second Mach Zehnder-type interferometer device (130) are arranged on or in the membrane (120), and wherein the first measurement propagation path (114) and the second measurement propagation path (134) are differently sensitive to applied force on the membrane (120).

    Light coupler with microstructures asymmetrically distributed along longitudinal axis

    公开(公告)号:US10564362B2

    公开(公告)日:2020-02-18

    申请号:US15538926

    申请日:2015-12-28

    Applicant: IMEC VZW

    Abstract: Embodiments described herein relate to a light coupler, a photonic integrated circuit, and a method for manufacturing a light coupler. The light coupler is for optically coupling to an integrated waveguide and for out-coupling a light signal propagating in the integrated waveguide into free space. The light coupler includes a plurality of microstructures. The plurality of microstructures is adapted in shape and position to compensate decay of the light signal when propagating in the light coupler. The plurality of microstructures is also adapted in shape and position to provide a power distribution of the light signal when coupled into free space such that the power distribution corresponds to a predetermined target power distribution. Each of the microstructures forms an optical scattering center. The microstructures are positioned on the light coupler in accordance with a non-uniform number density distribution.

    Devices and methods for generation and detection of spin waves

    公开(公告)号:US10211809B2

    公开(公告)日:2019-02-19

    申请号:US15143228

    申请日:2016-04-29

    Applicant: IMEC VZW

    Abstract: The disclosed technology generally relates to semiconductor devices, and more particularly to a device configured as one or both of a spin wave generator or a spin wave detector. In one aspect, the device includes a magnetostrictive film and a deformation film physically connected to the magnetorestrictive film. The device also includes an acoustic isolation surrounding the magnetostrictive film and the deformation film to form an acoustic resonator. When the device is configured as the spin wave generator, the deformation film is configured to undergo a change physical dimensions in response to an actuation, where the change in the physical dimensions of the deformation film induces a mechanical stress in the magnetostrictive film to cause a change in the magnetization of the magnetostrictive film. When the device is configured as the spin wave detector, the magnetostrictive film is configured to undergo to a change in physical dimensions in response to a change in magnetization, wherein the change in the physical dimensions of the magnetostrictive film induces a mechanical stress in the deformation film to cause generation of electrical power by the deformation film.

    Calibration of Micro-Mirror Arrays
    6.
    发明申请
    Calibration of Micro-Mirror Arrays 有权
    微镜阵列校准

    公开(公告)号:US20130187669A1

    公开(公告)日:2013-07-25

    申请号:US13746149

    申请日:2013-01-21

    Applicant: IMEC

    Abstract: A built-in self-calibration system and method for a micro-mirror array device, for example, operating as a variable focal length lens is described. The calibration method comprises determining a capacitance value for each micro-mirror element in the array device at a number of predetermined reference angles to provide a capacitance-reference angle relationship. From the capacitance values, an interpolation step is carried to determine intermediate tilt angles for each micro-mirror element in the array. A voltage sweep is applied to the micro-mirror array and capacitance values, for each micro-mirror element in the array, are measured. For a capacitance value that matches one of the values in the capacitance-reference angle relationship, the corresponding voltage is linked to the associated tilt angle to provide a voltage-tilt angle characteristic which then stored in a memory for subsequent use.

    Abstract translation: 描述了用作微反射镜阵列器件的内置自校准系统和方法,例如作为可变焦距透镜操作。 校准方法包括以多个预定参考角度确定阵列器件中的每个微镜元件的电容值,以提供电容参考角度关系。 根据电容值,进行插值步骤以确定阵列中的每个微镜元件的中间倾斜角度。 对微镜阵列施加电压扫描,并测量阵列中每个微镜元件的电容值。 对于与电容参考角度关系中的一个值匹配的电容值,相应的电压与相关联的倾斜角度相关联,以提供电压倾斜角特性,然后将其存储在存储器中用于随后的使用。

    Flexible ultrasound transducer
    7.
    发明授权

    公开(公告)号:US12194497B2

    公开(公告)日:2025-01-14

    申请号:US18589696

    申请日:2024-02-28

    Abstract: The present invention provides a flexible ultrasound transducer for an ultrasound monitoring system for examining a curved object. The ultrasound transducer comprises an integrated circuit structure and a multi-layered structure, said multi-layered structure comprising an array of ultrasound transducing elements arranged in a first layer structure and configured for generating ultrasonic energy propagating along a main transducer axis Z and an array of control circuits arranged in a second layer structure, and wherein the array of control circuits and the integrated circuit structure are configured for operating the array of ultrasound transducing elements in said first layer structure, Further, the multi-layered structure comprises at least one flexible layer arranged so that the bending flexibility of the multi-layered structure permits the ultrasound transducer to form a continuous contact with said curved object during operation.

    Absorption spectrum detection of a fluid

    公开(公告)号:US10514333B2

    公开(公告)日:2019-12-24

    申请号:US15735475

    申请日:2016-06-30

    Applicant: IMEC VZW

    Abstract: The present disclosure describes a device for measuring an optical absorption property of a fluid as function of wavelength. The device comprises a broadband light source for emitting light, a plurality of integrated optical waveguides for guiding this light and a light coupler for coupling the emitted light into the integrated optical waveguides such that the light coupled into each integrated optical waveguide has substantially the same spectral distribution. The device also comprises a microfluidic channel for containing the fluid, arranged such as to allow an interaction of the light propagating through each waveguide with the fluid in the microfluidic channel, and a plurality of spectral analysis devices optically coupled to corresponding waveguides—such as to receive the light after interaction with the fluid. The spectral analysis devices are adapted for generating a signal representative of a plurality of spectral components of the light.

    Optical Interconnect With High Alignment Tolerance

    公开(公告)号:US20180180816A1

    公开(公告)日:2018-06-28

    申请号:US15851051

    申请日:2017-12-21

    Applicant: IMEC VZW

    CPC classification number: G02B6/29332 G02B6/12002 G02B6/125 G02B6/29331

    Abstract: An example embodiment may include an optical system for obtaining radiation coupling between two waveguides positioned in a non-coplanar configuration. The optical system may include a first waveguide positioned in a first plane and a second waveguide positioned in a second plane. The first waveguide may be stacked over the second waveguide at a distance adapted to allow evanescent coupling between the first waveguide and the second waveguide. The first waveguide and the second waveguide may be configured such that the coupling is at least partly tolerant to relative translation or rotation of the first waveguide and the second waveguide with respect to each other.

Patent Agency Ranking