Abstract:
A multi-die package is manufactured by attaching a first semiconductor die made of a first semiconductor material to a thermally conductive flange via a first die attach material, and attaching a second semiconductor die to the same thermally conductive flange as the first semiconductor die via a second die attach material. The second semiconductor die is made of a second semiconductor material different than the first semiconductor material. The first semiconductor die is held in place by the first die attach material during attachment of the second semiconductor die to the flange. Leads are attached to the thermally conductive flange or to an insulating member secured to the flange. The leads provide external electrical access to the first and second semiconductor dies.
Abstract:
A packaged RF power transistor includes an RF input lead, a DC gate bias lead, an RF power transistor comprising gate, source and drain terminals, and an input match network. The input match network includes a primary inductor electrically connected to the RF input lead, a secondary inductor electrically connected to the gate terminal and to the DC gate bias lead, and a tuning capacitor electrically connected to the RF input lead and physically disconnected from the gate terminal. The input match network is configured to block DC voltages between the RF input lead and the gate terminal and to propagate AC voltages in a defined frequency range from the RF input lead to the gate terminal. The tuning capacitor is configured to adjust a capacitance of the input match network based upon a variation in DC voltage applied to the RF input lead.
Abstract:
A multi-die package includes a thermally conductive flange, a first semiconductor die made of a first semiconductor material attached to the thermally conductive flange via a first die attach material, a second semiconductor die attached to the same thermally conductive flange as the first semiconductor die via a second die attach material, and leads attached to the thermally conductive flange or to an insulating member secured to the flange. The leads are configured to provide external electrical access to the first and second semiconductor dies. The second semiconductor die is made of a second semiconductor material different than the first semiconductor material. Additional multi-die package embodiments are described.
Abstract:
A semiconductor package includes a metal flange having a lower surface and an upper surface opposite the lower surface. An electrically insulating window frame is disposed on the upper surface of the flange. The electrically insulating window frame forms a ring around a periphery of the metal flange so as to expose the upper surface of the metal flange in a central die attach region. A first electrically conductive lead is disposed on the electrically insulating window frame and extends away from a first side of the metal flange. A second electrically conductive lead is disposed on the electrically insulating window frame and extends away from a second side of the metal flange, the second side being opposite the first side. A first harmonic filtering feature is formed on a portion of the electrically insulating window frame and is electrically connected to the first electrically conductive lead.
Abstract:
A semiconductor package includes a metal flange having a lower surface and an upper surface opposite the lower surface. An electrically insulating window frame is disposed on the upper surface of the flange. The electrically insulating window frame forms a ring around a periphery of the metal flange so as to expose the upper surface of the metal flange in a central die attach region. A first electrically conductive lead is disposed on the electrically insulating window frame and extends away from a first side of the metal flange. A second electrically conductive lead is disposed on the electrically insulating window frame and extends away from a second side of the metal flange, the second side being opposite the first side. A first harmonic filtering feature is formed on a portion of the electrically insulating window frame and is electrically connected to the first electrically conductive lead.
Abstract:
A multi-die package is manufactured by attaching a first semiconductor die made of a first semiconductor material to a thermally conductive flange via a first die attach material, and attaching a second semiconductor die to the same thermally conductive flange as the first semiconductor die via a second die attach material. The second semiconductor die is made of a second semiconductor material different than the first semiconductor material. The first semiconductor die is held in place by the first die attach material during attachment of the second semiconductor die to the flange. Leads are attached to the thermally conductive flange or to an insulating member secured to the flange. The leads provide external electrical access to the first and second semiconductor dies.
Abstract:
A packaged RF power transistor includes an RF input lead, a DC gate bias lead, an RF power transistor comprising gate, source and drain terminals, and an input match network. The input match network includes a primary inductor electrically connected to the RF input lead, a secondary inductor electrically connected to the gate terminal and to the DC gate bias lead, and a tuning capacitor electrically connected to the RF input lead and physically disconnected from the gate terminal. The input match network is configured to block DC voltages between the RF input lead and the gate terminal and to propagate AC voltages in a defined frequency range from the RF input lead to the gate terminal. The tuning capacitor is configured to adjust a capacitance of the input match network based upon a variation in DC voltage applied to the RF input lead.