Abstract:
A method for processing a semiconductor device in accordance with various embodiments may include: depositing a first metallization layer over a semiconductor workpiece; patterning the first metallization layer; and depositing a second metallization layer over the patterned first metallization layer, wherein depositing the second metallization layer includes an electroless deposition process including immersing the patterned first metallization layer in a metal electrolyte.
Abstract:
A semiconductor device includes a first load terminal electrically coupled to a source zone of a transistor cell. A gate terminal is electrically coupled to a gate electrode which is capacitively coupled to a body zone of the transistor cell. The source and body zones are formed in a semiconductor portion. A thermoresistive element is thermally connected to the semiconductor portion and is electrically coupled between the gate terminal and the first load terminal. Above a maximum operation temperature specified for the semiconductor device, an electric resistance of the thermoresistive element decreases by at least two orders of magnitude within a critical temperature span of at most 50 Kelvin.
Abstract:
A package for mounting on a mounting base is disclosed. In one example, the package comprises a carrier, an electronic component mounted at the carrier, leads electrically coupled with the electronic component and to be electrically coupled with the mounting base, and a linear spacer for defining a spacing with respect to the carrier.
Abstract:
A package for mounting on a mounting base is disclosed. In one example, the package comprises a carrier, an electronic component mounted at the carrier, leads electrically coupled with the electronic component and to be electrically coupled with the mounting base, and a linear spacer for defining a spacing with respect to the carrier.
Abstract:
A semiconductor device includes a first load terminal electrically coupled to a source zone of a transistor cell. A gate terminal is electrically coupled to a gate electrode which is capacitively coupled to a body zone of the transistor cell. The source and body zones are formed in a semiconductor portion. A thermoresistive element is thermally connected to the semiconductor portion and is electrically coupled between the gate terminal and the first load terminal. Above a maximum operation temperature specified for the semiconductor device, an electric resistance of the thermoresistive element decreases by at least two orders of magnitude within a critical temperature span of at most 50 Kelvin.