Abstract:
A microelectronic assembly is provided, comprising: a first plurality of integrated circuit (IC) dies in a first level, each one of the first plurality of IC dies having respective first physical unclonable function (PUF) circuits; a second IC die having a second PUF circuit and a security circuit; a second plurality of IC dies in a second level, the second level not coplanar with the first level, the first level and the second level being coupled with interconnects having a pitch of less than 10 micrometers between adjacent ones of the interconnects; and conductive pathways between the first plurality of IC dies and the second IC die for communication between the first PUF circuits and the second PUF circuit, the conductive pathways comprising a portion of the interconnects.
Abstract:
The disclosure generally provides methods, systems and apparatus for an improved a Physically Unclonable Function (PUF). In one embodiment, the disclosure relates to a method to provide data from a Physically Unclonable Function (PUF) circuit array. The method includes storing a plurality of first data bits into a respective ones of a plurality of first bitcells of the PUF array to form a first dataset; storing a plurality of second data bits into a respective ones of a plurality of second bitcells of the PUF array, the plurality of second data bits defining a helper dataset; reading the first dataset from the plurality of first bitcells to provide a fist read dataset; applying an error correction factor to the first read data dataset to form a security key dataset; and outputting the security key dataset from the PUF circuit array.
Abstract:
Systems, apparatuses and methods may provide for technology that receives entropy data from an entropy source, determines a measurement of a serial correlation of values of bits of the entropy data, and determines, based upon the measurement of the serial correlation, if the entropy data is suitable as a basis for an encryption operation to be performed on data.
Abstract:
The disclosure relates to systems, methods and devices to provide race-condition true random number generator (TRNG) for soft intellectual property (IP) in field-programmable gate arrays (FPGAs). In an exemplary embodiment, a pair of long adder chains are raced against one another to complete a full cycle. Due to variances in the silicon, different chains will win each race at different times and thereby produce entropy. A calibration circuit can be used to set up the adder chains in an appropriate initial state to maximize the entropy produced. This structure has been found to be robust to layout changes, and the use of two such adder-chain-pairs reduces interference from other structures. Among others, the soft IP makes adding a robust TRNG to an FPGA much easier without concerns for how the structures are laid out or what other IP is nearby in the layout. The disclosed embodiments reduces the effort to add a TRNG to an FPGA design and improves the robustness of the TRNG making the design FIPS certifiable.
Abstract:
A processor includes an execution unit to generate a random number. The execution unit includes entropy source circuits, correlation circuits, and an extractor circuit. The entropy source circuits include all-digital components and are to generate an initial randomized bit stream. The correlation circuits are to remove correlations from the initial randomized bit stream to yield an intermediate randomized bit stream. The extractor circuit is to select a subset of the intermediate randomized bit stream as a random output of the execution unit.
Abstract:
A processor of an aspect includes root key generation logic to generate a root key. The root key generation logic includes a source of static and entropic bits. The processor also includes key derivation logic coupled with the root key generation logic. The key derivation logic is to derive one or more keys from the root key. The processor also includes cryptographic primitive logic coupled with the root key generation logic. The cryptographic primitive logic is to perform cryptographic operations. The processor also includes a security boundary containing the root key generation logic, the key derivation logic, and the cryptographic primitive logic. Other processors, methods, and systems are also disclosed.
Abstract:
Techniques and mechanisms for providing physically unclonable function (PUF) circuitry at a substrate which supports coupling to an integrated circuit (IC) chip. In an embodiment, the substrate comprises an array of electrodes which extend in a level of metallization at a side of the insulator layer. A cap layer, disposed on the array, is in contact with the electrodes and with a portion of the insulator layer which is between the electrodes. A material of the cap layer has a different composition or microstructure than the metallization. Regions of the cap layer variously provide respective impedances each between a corresponding two electrodes. In other embodiments, the substrate includes (or couples to) integrated circuitry that is operable to determine security information based on the detection of one or more such impedances.
Abstract:
This disclosure is directed to a multiple input cryptographic engine. In general, an cryptographic engine consistent with the present disclosure may improve on existing systems that generate encrypted data (e.g., ciphertext) from decrypted input data (e.g., plaintext), or that conversely generate decrypted data from encrypted data, in that a second input may be received into the cryptographic engine while a first input is still being processed, allowing multiple inputs to be processed concurrently. An example device may include an input interface to receive data into the device, an output interface to output data from the device and cryptographic circuitry. The cryptographic circuitry may be configured encrypt/decrypt data received via the input interface into encrypted/decrypted data while also converting a least a portion of a second input received via the input interface into second encrypted/decrypted data. The encrypted/decrypted data may then be output via the output interface.
Abstract:
A method and device for securely provisioning trust anchors includes generating a database wrapper key as a function of computing device hardware. The database wrapper key encrypts a key database when it is not in use by a trusted execution environment and may be generated using a Physical Unclonable Function (PUF). A local computing device establishes a secure connection and security protocols with a remote computing device. In establishing the secure connection, the local computing device and remote computing device may exchange and/or authenticate cryptographic keys, including Enhanced Privacy Identification (EPID) keys, and establish a session key and device identifier(s). One or more trust anchors are then provisioned depending on whether unilateral, bilateral, or multilateral trust is established. The local computing device may act as a group or domain controller in establishing multilateral trust. Any of the devices may also require user presence to be verified.
Abstract:
An integrated circuit substrate of an aspect includes a plurality of exposed electrical contacts. The integrated circuit substrate also includes an inaccessible set of Physically Unclonable Function (PUF) cells to generate an inaccessible set of PUF bits that are not accessible through the exposed electrical contacts. The integrated circuit substrate also includes an accessible set of PUF cells to generate an accessible set of PUF bits that are accessible through the exposed electrical contacts. Other apparatus, methods, and systems are also disclosed.