Abstract:
A capacitor is disclosed. The capacitor includes a first metal layer, a second metal layer on the first metal layer, a ferroelectric layer on the second metal layer, and a third metal layer on the ferroelectric layer. The second metal layer includes a first non-reactive barrier metal and the third metal layer includes a second non-reactive barrier metal. A fourth metal layer is on the third metal layer.
Abstract:
Selective dielectric growth directing contact to gate or contact to trench contact are described. In an example, an integrated circuit structure includes a plurality of gate structures above a substrate. A plurality of conductive trench contact structures is alternating with the plurality of gate structures and have an uppermost surface above an uppermost surface of gate electrodes of the plurality of gate structures. The integrated circuit structure also includes a plurality of dielectric spacers, a corresponding one of the plurality of dielectric spacers between adjacent ones of the plurality of gate structures and the plurality of conductive trench contact structures. A dielectric-on-metal (DOM) layer is on and is confined to the uppermost surface of the conductive trench contact structures. A gate contact via is on a gate electrode of one of the plurality of gate structures.
Abstract:
Embodiments of the present disclosure describe techniques and configurations associated with modulation of magnetic properties through implantation. In one embodiment, a method includes providing a substrate having an integrated circuit (IC) structure disposed on the substrate, the IC structure including a magnetizable material, implanting at least a portion of the magnetizable material with a dopant and magnetizing the magnetizable material, wherein said magnetizing is inhibited in the implanted portion of the magnetizable material. Other embodiments may be described and/or claimed.
Abstract:
Integrated circuit structures having dual stress gates are described. For example, an integrated circuit structure includes a first vertical stack of horizontal nanowires, and a second vertical stack of nanowires laterally spaced apart from the first vertical stack of horizontal nanowires. An NMOS gate electrode is over the first vertical stack of horizontal nanowires, the NMOS gate electrode having a tensile layer extending from a top to a bottom of the first vertical stack of horizontal nanowires. A PMOS gate electrode is over the second vertical stack of horizontal nanowires, the PMOS gate electrode having a compressive layer extending from a top to a bottom of the second vertical stack of horizontal nanowires. The tensile layer of the NMOS gate electrode is not included in the PMOS gate electrode.
Abstract:
Low resistance approaches for fabricating contacts, and semiconductor structures having low resistance metal contacts, are described. In an example, an integrated circuit structure includes a semiconductor structure above a substrate. A gate electrode is over the semiconductor structure, the gate electrode defining a channel region in the semiconductor structure. A first semiconductor source or drain structure is at a first end of the channel region at a first side of the gate electrode. A second semiconductor source or drain structure is at a second end of the channel region at a second side of the gate electrode, the second end opposite the first end. A source or drain contact is directly on the first or second semiconductor source or drain structure, the source or drain contact including a barrier layer and an inner conductive structure.
Abstract:
Embodiments disclosed herein include semiconductor devices with source/drain interconnects that include a barrier layer. In an embodiment the semiconductor device comprises a source region and a drain region. In an embodiment, a semiconductor channel is between the source region and the drain region, and a gate electrode is over the semiconductor channel. In an embodiment, the semiconductor device further comprises interconnects to the source region and the drain region. In an embodiment, the interconnects comprise a barrier layer, a metal layer, and a fill metal.
Abstract:
A capacitor is disclosed that includes a first metal layer and a seed layer on the first metal layer. The seed layer includes a polar phase crystalline structure. The capacitor also includes a ferroelectric layer on the seed layer and a second metal layer on the ferroelectric layer.