Stacked channel structures for MOSFETs

    公开(公告)号:US10790281B2

    公开(公告)日:2020-09-29

    申请号:US15773325

    申请日:2015-12-03

    Abstract: Disclosed herein are stacked channel structures for metal oxide semiconductor field effect transistors (MOSFETs) and related circuit elements, computing devices, and methods. For example, a stacked channel structure may include: a semiconductor substrate having a substrate lattice constant; a fin extending away from the semiconductor substrate, the fin having an upper region and a lower region; a first transistor in the lower region, wherein the first transistor has a first channel, the first channel has a first lattice constant, and the first lattice constant is different from the substrate lattice constant; and a second transistor in the upper region, wherein the second transistor has a second channel, the second channel has a second lattice constant, and the second lattice constant is different from the substrate lattice constant.

    VERTICALLY STACKED FINFETS & SHARED GATE PATTERNING

    公开(公告)号:US20220336284A1

    公开(公告)日:2022-10-20

    申请号:US17848191

    申请日:2022-06-23

    Abstract: Stacked finFET structures including a fin having at least a first layer of semiconductor material stacked over or under a second layer of semiconductor material. The first and second layers may include a Group IV semiconductor material layer and a Group III-V semiconductor material layer, for example. A stacked finFET may include an N-type finFET stacked over or under a P-type finFET, the two finFETs may have channel portions within the different semiconductor material layers. Channel portions of the first and second layers of semiconductor material may be coupled to separate gate electrodes that are vertically aligned. Channel portions of the first and second layers of semiconductor material may be vertically separated by subfin portions of the first and second layers. Different layers of dielectric material adjacent to the subfin portions may improve electrical isolation between the channel portions, for example as a source of fixed charge or impurity dopants.

    Retrograde transistor doping by heterojunction materials

    公开(公告)号:US10896907B2

    公开(公告)日:2021-01-19

    申请号:US16318361

    申请日:2016-09-30

    Abstract: A transistor including a gate stack and source and drain on opposing sides of the gate stack; and a first material and a second material on the substrate, the first material disposed between the substrate and the second material and the channel of the transistor is defined in the second material between the source and drain, wherein the first material and the second material each include an implant and the implant includes a greater solubility in the first material than in the second material. A method for forming an integrated circuit structure including forming a first material on a substrate; forming a second material on the first material; introducing an implant into the second material, wherein the implant includes a greater solubility in the first material than in the second material; annealing the substrate; and forming a transistor on the substrate, the transistor including a channel including the second material.

    VERTICALLY STACKED FINFETS & SHARED GATE PATTERNING

    公开(公告)号:US20200235013A1

    公开(公告)日:2020-07-23

    申请号:US16635108

    申请日:2017-08-24

    Abstract: Stacked finFET structures including a fin having at least a first layer of semiconductor material stacked over or under a second layer of semiconductor material. The first and second layers may include a Group IV semiconductor material layer and a Group III-V semiconductor material layer, for example. A stacked finFET may include an N-type finFET stacked over or under a P-type finFET, the two finFETs may have channel portions within the different semiconductor material layers. Channel portions of the first and second layers of semiconductor material may be coupled to separate gate electrodes that are vertically aligned. Channel portions of the first and second layers of semiconductor material may be vertically separated by subfin portions of the first and second layers. Different layers of dielectric material adjacent to the subfin portions may improve electrical isolation between the channel portions, for example as a source of fixed charge or impurity dopants.

Patent Agency Ranking