Method and system for hybrid modulation and demodulation

    公开(公告)号:US11438021B2

    公开(公告)日:2022-09-06

    申请号:US17167674

    申请日:2021-02-04

    Abstract: A system for hybrid modulation and demodulation includes a transmitter and a receiver. The transmitter is configured to receive a hybrid signal of a space-ground link system (SGLS), including a first component and a second component; perform a double sideband (DSB) modulation on the first component using a carrier frequency to obtain a first waveform; perform a single sideband (SSB) modulation on the second component using the carrier frequency to obtain a second waveform; mix the first waveform and the second waveform to generate a hybrid waveform; and transmit the hybrid waveform. The receiver is configured to receive the hybrid waveform; determine the carrier frequency; separate the first waveform and the second waveform; perform a DSB demodulation on the first waveform to obtain a first demodulated signal; and perform an SSB demodulation on the second waveform to obtain a second demodulated signal.

    Method and system for wave propagation prediction

    公开(公告)号:US11288856B2

    公开(公告)日:2022-03-29

    申请号:US16674929

    申请日:2019-11-05

    Abstract: The present disclosure provides a method for wave propagation prediction based on a 3D ray tracing engine and machine-learning based dominant ray selection. The method includes receiving, integrating, and processing input data. Integrating and processing the input data includes dividing a cone of the original millimeter wave (mmWave) into a plurality of sub cones; determining a contribution weight of rays coming from each sub cone to the received signal strength (RSS) at a receiving end of interest; and determining rays coming from one or more sub cones that have a total contribution weight to the RSS larger than a preset threshold value as dominant rays using a neural network obtained through a machine learning approach. The method further includes performing ray tracing based on the input data and the dominant rays to predict wave propagation.

    Methods, systems and media for joint manifold learning based heterogenous sensor data fusion

    公开(公告)号:US11210570B2

    公开(公告)日:2021-12-28

    申请号:US15878188

    申请日:2018-01-23

    Abstract: The present disclosure provides a method for joint manifold learning based heterogenous sensor data fusion, comprising: obtaining learning heterogeneous sensor data from a plurality sensors to form a joint manifold, wherein the plurality sensors include different types of sensors that detect different characteristics of targeting objects; performing, using a hardware processor, a plurality of manifold learning algorithms to process the joint manifold to obtain raw manifold learning results, wherein a dimension of the manifold learning results is less than a dimension of the joint manifold; processing the raw manifold learning results to obtain intrinsic parameters of the targeting objects; evaluating the multiple manifold learning algorithms based on the raw manifold learning results and the intrinsic parameters to determine one or more optimum manifold learning algorithms; and applying the one or more optimum manifold learning algorithms to fuse heterogeneous sensor data generated by the plurality sensors.

    Routing method for satellite communication network
    5.
    发明授权
    Routing method for satellite communication network 有权
    卫星通信网路由方法

    公开(公告)号:US09094856B1

    公开(公告)日:2015-07-28

    申请号:US14188697

    申请日:2014-02-25

    Abstract: Routing methods are provided for IP-based Iridium like LEO polar satellite constellation network for finding a Manhattan path between a source node and a destination node. The routing methods can include identification of congested inter satellite links (ISLs). By selecting and using uncongested alternative paths, an original routing process can be converted into sub-routing processes each in a small scale of a Manhattan path region. Quality of Service (QoS) requirements such as delays and jitters can be incorporated into the routing methods, which leads to efficient routing and enhanced QoS-performance over the satellite constellation network. The disclosed routing methods can be suitable for real-time routing/rerouting applications under dynamic network conditions.

    Abstract translation: 为基于IP的铱星提供路由方法,如LEO极地卫星星座网络,用于在源节点和目的节点之间查找曼哈顿路径。 路由方法可以包括识别拥塞的卫星间链路(ISL)。 通过选择和使用不成功的替代路径,可以将原始路由进程转换为曼哈顿路径区域的小规模的每个子路由进程。 服务质量(QoS)要求(如延迟和抖动)可以并入到路由方法中,这导致卫星星座网络的高效路由和增强的QoS性能。 所公开的路由方法可适用于在动态网络条件下的实时路由/重新路由应用。

    Method and system for free space optical communication performance prediction

    公开(公告)号:US11323177B2

    公开(公告)日:2022-05-03

    申请号:US17021289

    申请日:2020-09-15

    Abstract: Various embodiments provide a method for free space optical communication performance prediction method. The method includes: in a training stage, collecting a large number of data representing FSOC performance from external data sources and through simulation in five feature categories; dividing the collected data into training datasets and testing datasets to train a prediction model based on a deep neural network (DNN); evaluating a prediction error by a loss function and adjusting weights and biases of hidden layers of the DNN to minimize the prediction error; repeating training the prediction model until the prediction error is smaller than or equal to a pre-set threshold; in an application stage, receiving parameters entered by a user for an application scenario; retrieving and preparing real-time data from the external data sources for the application scenario; and generating near real-time FSOC performance prediction results based on the trained prediction model.

    Satellite communication framework and control method thereof

    公开(公告)号:US10951304B2

    公开(公告)日:2021-03-16

    申请号:US16275859

    申请日:2019-02-14

    Abstract: A satellite communication framework includes a satellite system controller; at least one satellite transponder; and a plurality of remote terminals, each including a modem, a router, and a terminal agent. The terminal agent is configured to, based on a current allowable data rate and measurements of a current router queue size and a current router packet arrival rate, use a delayed uplink resource assignment for each modem and an MCV-based flow-control policy to forecast a future router queue size and a future router packet arrival rate and further update the delayed uplink resource request for a time after an uplink allocation delay. The modem is configured to communicate with the router and also with the satellite system controller through the satellite transponder, perform modulation and demodulation, and manage packet loss and delay according to the future router queue size and the future router packet arrival rate.

    Methods and systems for time synchronization among unmanned aerial systems

    公开(公告)号:US11864140B2

    公开(公告)日:2024-01-02

    申请号:US17579348

    申请日:2022-01-19

    CPC classification number: H04W56/0015 B64C39/024 H04B7/026

    Abstract: A system and method are provided for enhanced multi-way time transfer for time synchronization between at least one slave node and one master node. A slave node sends a first message to the master node to launch a time synchronization between the slave node and the master node. Upon receiving the first message, the master node adds a receiving time on a master clock to the first message to form a second message. The master node sends the second message back to the slave node and the slave node adds a receiving time on the slave clock to the second message to form an updated message. The slave node performs a time adjustment to the slave clock based on the updated message, thereby synchronizing time between the slave node and the master node.

    Methods and systems providing cyber security

    公开(公告)号:US09954897B2

    公开(公告)日:2018-04-24

    申请号:US15057234

    申请日:2016-03-01

    CPC classification number: H04L63/1491 G06N7/005 H04L63/1408

    Abstract: Methods and systems for providing cyber security, wherein a computer with network access incorporates game theory and utilizes a honeypot to enhance game-theoretic developments over active and passive sensors. To numerically solve the uniquely three-sided game modeled cyber security problem, using a geometric solution based on three-dimensional (3D) action surface and action curve. The methods and systems determine whether the game problem has one Nash equilibrium, multiple Nash equilibriums, or no Nash equilibrium; checks whether the equilibrium is a mixed or pure Nash; and timely computes Nash equilibriums; and follows a fictitious play concept. The solution is adaptive and can be applied for any partially observed cyber security system.

Patent Agency Ranking