Abstract:
Methods of making fiber-containing prepregs are described. The methods may include the steps of providing a plurality of fibers, and applying a reactive resin composition to the plurality of fibers to make a mixture of the plurality of fibers and the resin composition. The reactive resin composition may include at least one of monomers and oligomers capable of polymerizing into a polymerized resin matrix. The mixture may be heated to a polymerization temperature where the monomers, oligomers, or both polymerize to form a fiber-resin amalgam that includes the polymerized resin matrix. The fiber-resin amalgam may be formed into the fiber-containing prepreg. Also described are methods of forming a fiber-reinforced composite that includes the prepreg.
Abstract:
Methods of making a fiber-containing prepregs may include drawing unsized fibers from a batch of molten glass. The method may also include applying a sizing composition to the unsized fibers to form a plurality of sized fibers, where the sizing composition includes a first polymerization agent for polymerizing caprolactam. The method may further include weaving the plurality of sized fibers into a fabric. Another step may include melting a reactive resin composition to form a melted reactive resin composition, where the reactive resin composition may include caprolactam. The melted reactive resin composition may be applied to the fabric. The method may further include heating the fabric and the melted reactive resin composition to a polymerization temperature, where the caprolactam polymerizes to form a fiber-resin amalgam including a polyamide. Another step may be to form the fiber-resin amalgam into the fiber-containing prepreg.
Abstract:
Methods of making a fiber-containing prepregs may include drawing unsized fibers from a batch of molten glass. The method may also include applying a sizing composition to the unsized fibers to form a plurality of sized fibers, where the sizing composition includes a first polymerization agent for polymerizing caprolactam. The method may further include weaving the plurality of sized fibers into a fabric. Another step may include melting a reactive resin composition to form a melted reactive resin composition, where the reactive resin composition may include caprolactam. The melted reactive resin composition may be applied to the fabric. The method may further include heating the fabric and the melted reactive resin composition to a polymerization temperature, where the caprolactam polymerizes to form a fiber-resin amalgam including a polyamide. Another step may be to form the fiber-resin amalgam into the fiber-containing prepreg.
Abstract:
Methods of making fiber-resin compositions are described. The method may include the providing of a reactive resin composition to an extruder, where the reactive resin composition may include monomers, oligomers, or both, that are capable of polymerizing into a thermoplastic resin. The method may further include combining the reactive resin composition with a plurality of reactive fibers that are also supplied to the extruder. The plurality of reactive fibers may be sized with at least one polymerization agent and/or coupling agent. The fiber-resin composition may be extruded from the extruder, where the composition includes a thermoplastic resin in contact with the plurality of fibers that is formed by the polymerization of the monomers and/or oligomers of the reactive resin composition. Also described are methods of making fiber-reinforced composite articles from the fiber-resin composition.
Abstract:
Methods of making a fiber-containing prepregs may include drawing unsized fibers from a batch of molten glass. The method may also include applying a sizing composition to the unsized fibers to form a plurality of sized fibers, where the sizing composition includes a first polymerization agent for polymerizing caprolactam. The method may further include weaving the plurality of sized fibers into a fabric. Another step may include melting a reactive resin composition to form a melted reactive resin composition, where the reactive resin composition may include caprolactam. The melted reactive resin composition may be applied to the fabric. The method may further include heating the fabric and the melted reactive resin composition to a polymerization temperature, where the caprolactam polymerizes to form a fiber-resin amalgam including a polyamide. Another step may be to form the fiber-resin amalgam into the fiber-containing prepreg.
Abstract:
Methods of making a fiber-reinforced thermoplastic polyurethane composite are described. The methods may include applying a sizing composition to a plurality of fibers to make sized fibers, where the sizing composition may include at least one curative for a thermoplastic polyurethane prepolymer. The sized fibers may be contacted with a thermoplastic polyurethane prepolymer composition to form a resin-fiber amalgam, where the thermoplastic polyurethane prepolymer composition includes 50 wt. % or less of a total amount of the curative that is also present on the sized fibers. The resin-fiber amalgam may then be cured to form the fiber-reinforced thermoplastic polyurethane composite.
Abstract:
Methods of making fiber-resin compositions are described. The methods may include the providing of a thermoplastic resin to an extruder, where the thermoplastic resin may include at least one reactive moiety capable of forming a covalent bond with a coupling agent on a plurality of reactive fibers. The methods may further include combining the thermoplastic resin with the plurality of reactive fibers also supplied to the extruder. The reactive fibers are sized with the coupling agent that reacts with the thermoplastic resin to form the fiber-resin composition, which may be extruded from the extruder. Methods of making fiber-reinforced composite articles from the fiber-resin composition are also described.