Abstract:
According to one embodiment, a system for manufacturing a polymethyl methacrylate (PMMA) prepreg includes a mechanism for continuously moving a fabric or mat and a resin application component that applies a methyl methacrylate (MMA) resin to the fabric or mat. The system also includes a press mechanism that presses the fabric or mat during the continuous movement subsequent to the application of the MMA resin to ensure that the MMA resin fully saturates the fabric or mat. The system further includes a curing oven through which the fabric or mat is continuously moved. The curing oven is maintained at a temperature of between 40° C. and 100° C. to polymerize the MMA resin and thereby form PMMA so that upon exiting the curing oven, the fabric or mat is fully impregnated with PMMA.
Abstract:
According to one embodiment, a system for manufacturing a fully impregnated thermoplastic prepreg includes a mechanism for moving a fabric or mat and a drying mechanism that removes residual moisture from at least one surface of the fabric or mat. The system also includes a resin application mechanism that applies a reactive resin to the fabric or mat and a press mechanism that presses the coated fabric or mat to ensure that the resin fully saturates the fabric or mat. The system further includes a curing oven through which the coated fabric or mat is moved to polymerize the resin and thereby form a thermoplastic polymer so that upon exiting the oven, the fabric or mat is fully impregnated with the thermoplastic polymer. During at least a portion of the process, humidity in the vicinity of the coated fabric or mat is maintained at substantially zero.
Abstract:
The present invention relates to coating compositions, processes for making them, and methods of application of the coating compositions. Further, the present invention relates to a process and apparatus for coating a metal substrate, for example an elongated metal tubular substrate such as a pipe. Most particularly, the coating can be used as an anti-corrosion coating on a pipe for use in oil, gas and water pipeline applications.
Abstract:
Methods of making fiber-containing prepregs are described. The methods may include the steps of providing a plurality of fibers, and applying a reactive resin composition to the plurality of fibers to make a mixture of the plurality of fibers and the resin composition. The reactive resin composition may include at least one of monomers and oligomers capable of polymerizing into a polymerized resin matrix. The mixture may be heated to a polymerization temperature where the monomers, oligomers, or both polymerize to form a fiber-resin amalgam that includes the polymerized resin matrix. The fiber-resin amalgam may be formed into the fiber-containing prepreg. Also described are methods of forming a fiber-reinforced composite that includes the prepreg.
Abstract:
A method and device for the pretreatment of polymer surfaces of components to be painted. At least one polymer surface of at least one component is preheated to a temperature that minimizes condensation on the component when the component is subsequently cleaned inside a pretreatment cell and then treated with an oxidizing flame. The cleaning of the polymer surface as well as the treatment of the polymer surface with an oxidizing flame are performed inside the same pretreatment cell.
Abstract:
There is herein described powder coated wood products and methods of producing powder coated wood products. More particularly, there is herein described powder coated chemically modified wood which is highly durable.
Abstract:
Methods and apparatuses are disclosed for applying melt flowable materials to components of articles of manufacture. The methods and apparatuses disclosed herein are concerned with formation of appropriate flowable materials, control over the manner in which the flowable materials are applied, treatment of the components prior to application of the flowable materials and the like. Moreover, the apparatuses and methods may be particularly suited for applying flowable materials to surfaces and components found in automotive, aerospace, and marine vehicles.
Abstract:
To provide a method of applying a primer in which film thickness of the primer is maintained constant to prevent pinholes, and a furnace is shortened as well. In a method of applying a primer to a back plate for a friction member, prior to applying the primer, the back plate is heated in advance. The temperature at which the back plate is preheated is set to be higher or equal to a temperature at which primer resin starts hardening within a range that the primer layer after hardening does not lose smoothness. When the primer is applied to the back plate preheated, the primer is immediately dried, and is hardened successively. At the preheating, even if the temperature is rapidly increased, a solvent for the primer does not bump, so that uniform film can be formed.
Abstract:
Wood is electrostatically coated with a thermosetting powder coating system in which a mixture of a self-curing epoxy resin and a catalyst therefore is extruded and a low temperature curing agent are both pulverized and the powders are blended with conventional additives to make a coating powder which is deposited on a wooden substrate and heated to cure. The mixture of resin and catalyst does not cure within the extruder but it is made to cure at low temperatures by the separate addition of the curing agent. A small amount of the low temperature curing agent, insufficient to cause substantial curing during extrusion may be used in place of the catalyst.