Abstract:
According to an aspect, a detection device includes: a substrate; a detection electrode disposed on a plane parallel to a surface of the substrate and including conductive thin wires and electrical coupling portions disposed where the conductive thin wires intersect with each other or are bent, and are coupled with each other, the conductive thin wires being arranged in a mesh-like form; a coupling wire that couples the conductive thin wires with a detecting unit at an end portion of the detection electrode; and a protective layer that is made of an insulation material and that covers the detection electrode and the coupling wire. An area density of the conductive thin wires per unit area is smaller in an end region ranging from an electrical coupling portion closest to the coupling wire to the coupling wire than in a region of the entire detection electrode.
Abstract:
According to an aspect, a detection device includes: a substrate; a detection electrode disposed on a plane parallel to a surface of the substrate and including conductive thin wires and electrical coupling portions disposed where the conductive thin wires intersect with each other or are bent, and are coupled with each other, the conductive thin wires being arranged in a mesh-like form; a coupling wire that couples the conductive thin wires with a detecting unit at an end portion of the detection electrode; and a protective layer that is made of an insulation material and that covers the detection electrode and the coupling wire. An area density of the conductive thin wires per unit area is smaller in an end region ranging from an electrical coupling portion closest to the coupling wire to the coupling wire than in a region of the entire detection electrode.
Abstract:
According to one embodiment, a liquid crystal display apparatus includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a gate wiring, a source wiring, an insulating film, a shield electrode, a primary pixel electrode, a peripheral wiring and a peripheral connecting electrode. The shield electrode is opposite to at least a portion of the gate wiring and the source wiring. The peripheral connecting electrode electrically connects the shield electrode and the peripheral wiring. The second substrate includes a pair of primary common electrodes.
Abstract:
An electronic component is equipped with a pad. The pad includes a lower transparent electric conductive layer formed on an insulating substrate. An insulating layer is formed on the lower transparent electric conductive layer. A contact hole is formed in the insulating layer for exposing the lower layer transparent electric conductive layer. A metal layer is formed on the lower transparent electric conductive layer and covered with the insulating layer so as to surround the contact hole. An upper transparent electric conductive layer is formed on the insulating layer and connected with the lower transparent electric conductive layer through the contact hole.
Abstract:
According to an aspect, a detection device includes: a substrate; a detection electrode disposed on a plane parallel to a surface of the substrate and including conductive thin wires and electrical coupling portions disposed where the conductive thin wires intersect with each other or are bent, and are coupled with each other, the conductive thin wires being arranged in a mesh-like form; a coupling wire that couples the conductive thin wires with a detecting unit at an end portion of the detection electrode; and a protective layer that is made of an insulation material and that covers the detection electrode and the coupling wire. An area density of the conductive thin wires per unit area is smaller in an end region ranging from an electrical coupling portion closest to the coupling wire to the coupling wire than in a region of the entire detection electrode.
Abstract:
According to one embodiment, a liquid crystal display apparatus includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a gate wiring, a source wiring, an insulating film, a shield electrode, a primary pixel electrode, a peripheral wiring and a peripheral connecting electrode. The shield electrode is opposite to at least a portion of the gate wiring and the source wiring. The peripheral connecting electrode electrically connects the shield electrode and the peripheral wiring. The second substrate includes a pair of primary common electrodes.
Abstract:
An electronic component includes a substrate, a shielding layer formed on the substrate and a wiring substrate connected to the substrate. A pad group is formed on an overlap region on which the wiring substrate is arranged on the substrate. A first alignment pattern is formed on the substrate and extending to outside of the overlap region beyond a peripheral portion of the overlap region. A second alignment pattern is formed on the substrate and extending to outside of the overlap region beyond the peripheral portion of the overlap region. The pad group, the first and second alignment patterns are formed on the shielding layer. The first alignment pattern extends in a different direction from the direction of the second alignment pattern.