Abstract:
A thermoelectric material includes a semiconductor substrate, a semiconductor oxide film formed on the substrate, and a thermoelectric layer provided on the oxide film. The semiconductor oxide film has a first nano-opening formed therein. The thermoelectric layer has such a configuration that semiconductor nanodots are piled up on or above the first nano-opening so as to form a particle packed structure. At least some of the nanodots each have a second nano-opening formed in its surface, and are connected to each other through the second nano-opening with their crystal orientation aligned. The thermoelectric material is produced through steps of oxidizing the substrate to form the semiconductor oxide film thereon, forming the first nano-opening in the oxide film, and epitaxially growing to pile up the plurality of nanodots on the first nano-opening.As a result, it is possible to provide the thermoelectric material superior in thermoelectric conversion performance.
Abstract:
A thermoelectric material includes a semiconductor substrate, a semiconductor oxide film formed on the substrate, and a thermoelectric layer provided on the oxide film. The semiconductor oxide film has a first nano-opening formed therein. The thermoelectric layer has such a configuration that semiconductor nanodots are piled up on or above the first nano-opening so as to form a particle packed structure. At least some of the nanodots each have a second nano-opening formed in its surface, and are connected to each other through the second nano-opening with their crystal orientation aligned. The thermoelectric material is produced through steps of oxidizing the substrate to form the semiconductor oxide film thereon, forming the first nano-opening in the oxide film, and epitaxially growing to pile up the plurality of nanodots on the first nano-opening.As a result, it is possible to provide the thermoelectric material superior in thermoelectric conversion performance.