Abstract:
Disclosed is a primer-surfacer composition comprising a vehicle of a balanced acrylic polymer of methyl methacrylate, butyl methacrylate and methacrylic acid, the resultant polymer having an acid value in the range of about 25 to 35, the polymer having a relative viscosity of about 16 to 32 poise measured at 40% polymer solids in a toluene and isopropyl alcohol solvent at 25.degree. C. The primer-surfacer may also contain dispersed pigments and/or fillers such as carbon blacks, talc, iron oxide, clay, etc. The primer-surfacer composition is primarily used over unprimed, primed or previously finished metal or plastic substrates to provide a surface to which an acrylic lacquer, an acrylic enamel, an alkyd enamel or a polyurethane enamel coating can be applied. The primer-surfacer of this invention may be easily sanded to provide a finish for vehicles of excellent intercoat adhesion, excellent chip and corrosion resistance and excellent fill.
Abstract:
Polymer forming reactions have been previously known comprising five and six member oxazoline ring oxazolidines and reaction products containing the basic structure with polyfunctional aromatic and aliphatic isocyanates and moisture. Five types of oxazolidines have been previously illustrated. Use of these polymeric products have been found to be limited as the class of oxazolidines described in the prior art result in objectionable dark colored products. This invention relates to an advance thereover in providing light colored end products by use of a novel and specific dioxazabicyclo octanes, a substituted specialized class of oxazolidine ring compounds.
Abstract:
This invention relates to novel hydroxy-functional polyester diluents, and more particularly, to acrylic-modified hydroxy-functional polyester reactive diluents useful for blending with a variety of thermosetting or thermoplastic film-forming polymers. More specifically, the hydroxy-functional polyester reactive diluents are essentially low molecular weight polyesters derived from triols, and a combination of unsaturated monocarboxylic acids and saturated monocarboxylic acids. These hydroxy-functional polyester diluents may be copolymerized with one or more acrylic monomers, i.e. hydroxy-functional acrylic monomers, and blended with a variety of thermosetting or thermoplastic film-forming polymers. These blends of the film-forming polymers and the hydroxy-functional polyester diluents can be crosslinked with conventional crosslinking agents such as isocyanates and used in the formulation of low VOC paint compositions particularly useful as automotive topcoats.
Abstract:
This invention relates to novel hydroxy-functional polyester diluents, and more particularly, to acrylic-modified hydroxy-functional polyester reactive diluents useful for blending with a variety of thermosetting or thermoplastic film-forming polymers. More specifically, the hydroxy-functional polyester reactive diluents are essentially low molecular weight polyesters derived from triols, and a combination of unsaturated monocarboxylic acids and saturated monocarboxylic acids. These hydroxy-functional polyester diluents may be compolymerized with one or more acrylic monomers, i.e. hydroxy-functional acrylic monomers, and blended with a variety of thermosetting or thermoplastic film-forming polymers. These blends of the film-forming polymers and the hydroxy-functional polyester diluents can be crosslinked with conventional crosslinking agents as isocyanates and used in the formulation of low VOC paint compositions particularly useful as automotive topcoats.
Abstract:
This invention relates to novel hydroxy-functional polyester diluents, and more particularly, to acrylic-modified hydroxy-functional polyester reactive diluents useful for blending with a variety of thermosetting or thermoplastic film-forming polymers. More specifically, the hydroxy-functional polyester reactive diluents are essentially low molecular weight polyesters derived from triols, and a combination of unsaturated monocarboxylic acids and saturated monocarboxylic acids. These hydroxy-functional polyester diluents may be copolymerized with one or more acrylic monomers, i.e. hydroxy-functional acrylic monomers, and blended with a variety of thermosetting or thermoplastic film-forming polymers. These blends of the film-forming polymers and the hydroxy-functional polyester diluents can be crosslinked with conventional crosslinking agents such as isocyanates and used in the formulation of low VOC paint compositions particularly useful as automotive topcoats.
Abstract:
This invention relates to novel hydroxy-functional polyester diluents, and more particularly, to acrylic-modified hydroxy-functional polyester reactive diluents useful for blending with a variety of thermosetting or thermoplastic film-forming polymers. More specifically, the hydroxy-functional polyester reactive diluents are essentially low molecular weight polyesters derived from triols, and a combination of unsaturated monocarboxylic acids and saturated monocarboxylic acids. These hydroxy-functional polyester diluents may be copolymerized with one or more acrylic monomers, i.e. hydroxy-functional acrylic monomers, and blended with a variety of thermosetting or thermoplastic film-forming polymers. These blends of the film-forming polymers and the hydroxy-functional polyester diluents can be crosslinked with conventional crosslinking agents such as isocyanates and used in the formulation of low VOC paint compositions particularly useful as automotive topcoats.
Abstract:
This invention relates to novel fast-drying aliphatic solvent soluble acrylic-styrene polymer vehicles of paramount value as the binder vehicle for enamels and particularly for automotive after-market refinishing.Improvement in the quality and durability of automotive enamels in general has been outstanding with the advent of acrylic polymers useful as the adhesive binder in coatings for cars. When applied in production lines to automobile bodies originally under factory conditions, the use of high solvency enamel solvents and reducers has been a relatively obscure problem until recognition of the contribution of aromatic hydrocarbons solvents to smog development. Priorly curing or drying automotive paint films at a rapid speed has been feasible with elevated temperatures with little or no concern for energy consumption or atmospheric pollution. Large capital expenditures for high production rates with concurrent energy consumption have been heretofore acceptable generally. Part of the high energy requirement is due to the characteristically poor solvent release of acrylic polymers of the prior art.Essentially the vehicle comprises a first polymer of acrylic monomers chemically modified with a drying oil fatty acid moiety and isobornyl methacrylate in a first step in which a monomer comprising styrene is polymerized in a second step to produce an aliphatic solvent soluble enamel vehicle binder.