Abstract:
A method of treating diseased tissue in a patient, the diseased tissue being proximate a hardened previously implanted bone cement including relatively high atomic number elements in a patient. The method includes generating a photon beam and directing the generated photon beam into the patient in a direction such that at least a portion of the photon beam impinges on the hardened bone cement and generates Compton interaction knock-out electrons from the high atomic number elements included in the hardened bone cement as a result of interaction of the at least a portion of the photon beam with the bone cement, wherein the direction of the photon beam is such that the at least a portion of the photon beam impinges on the hardened bone cement so that at least some of the Compton interaction knock-out electrons impinge upon the diseased tissue.
Abstract:
Methods and systems are provided for hardware-accelerated packet multicasting in a virtual routing system. According to one embodiment, a virtual routing engine (VRE) including virtual routing processors and corresponding memory systems are provided. The VRE implements virtual routers (VRs) operable on the virtual routing processors and associated routing contexts utilizing potentially overlapping multicast address spaces resident in the memory systems. Multicasting of multicast flows originated by subscribers of a service provider is simultaneously performed on behalf of the subscribers. A VR is selected to handle multicast packets associated with a multicast flow. A routing context of the VRE is switched to one associated with the VR. A packet of the multicast flow is forwarded to multiple destinations by reading a portion of the packet from a common buffer for each instance of multicasting and applying transform control instructions to the packet for each instance of multicasting.
Abstract:
A structure of an electromagnetic shield layer for a plasma display panel and a method for manufacturing the same. The manufacturing method of the electromagnetic shield layer uses integrated technologies of hot embossing, coating, and electroplating. The structure according to the present invention is a metal layer with an electromagnetic-wave shielding effect and is built in a plastic material. The aspect ratios of the geometric patterns on the metal layer are above 75%.
Abstract:
The present invention discloses a chip-package structure and a fabrication process thereof, wherein a mount board is used as a support part, which is removed after completing the chip-package process, in order to promote the planarity, firmness and reliability of the entire package structure, to reduce the height of the entire package structure, to apply to the packaging of many kinds of semiconductors and to be used for various purposes.
Abstract:
Methods and systems are provided for routing traffic through a virtual router-based network switch. According to one embodiment, a flow data structure is established that identifies current packet flows associated with multiple virtual routers in the virtual router-based network device. When an incoming packet is received by the virtual router-based network device, it is then determined whether the incoming packet is associated with a current packet flow by accessing the flow data structure based on a header associated with the incoming packet. If it is determined that the incoming packet is associated with the current packet flow, then the incoming packet is hardware forwarded via a network interface of the virtual router-based network device without intervention by a processor of the virtual router-based network device, otherwise the incoming packet is forwarded to software on the processor for flow learning.
Abstract:
A substrate structure and the fabrication method thereof are provided herein. The present invention utilizes a laminate as the support of the package process and then removes the laminate after the following package steps so as to obtain a quite smooth surface for using in the internal-plane structure of the circuit board and a stacking structure that can be applied to many different types of the chip package structures.
Abstract:
A packet-forwarding engine (PFE) of a multiprocessor system uses an array of flow classification block (FCB) indices to multicast a packet. Packets are received and buffered in external memory. In one embodiment, when a multicast packet is identified, a bit is set in a packet descriptor and an FCB index is generated and sent with a null-packet to the egress processors which generate multiple descriptors with different indices for each instance of multicasting. All the descriptors may point to the same buffer in the external memory, which stores the multicast packet. A DMA engine reads from the same buffer multiple times and egress processors may access an appropriate transform control block (TCB) index so that the proper headers may be installed on the outgoing packet. The buffer may be released after the last time the packet is read by setting a particular bit of the FCB index.
Abstract:
Methods and systems are provided for applying metering and rate-limiting in a virtual router environment and supporting a hierarchy of metering/rate-limiting contexts per packet flow. According to one embodiment, multiple first level metering options and multiple second level metering options associated with a hierarchy of metering levels are provided. A virtual routing engine receives packets associated with a first packet flow and packets associated with a second packet flow. The virtual routing engine performs a first type of metering of the first level metering options on the packets associated with the first packet flow using a first metering control block (MCB) and performs a second type of metering of the second level metering options on the packets associated with the first packet flow and the packets associated with the second flow using a second MCB.
Abstract:
A method for routing packets in a router includes establishing a flow data structure identifying a packet flow through a virtual router in the router. Next, a system executing the method receives a packet, said packet having at least one packet header. The method then compares a subset of the at least one packet header to a subset of the flow data structure. If the subset of the at least one packet header matches the subset of the flow data structure, then the packet can be hardware accelerated to a network interface. Otherwise, the packet can be either dropped, or forwarded to a general purpose processor for processing.
Abstract:
Methods and systems are provided for hardware-accelerated packet multicasting in a virtual routing system. According to one embodiment, a multicast packet is received at an ingress system of a packet-forwarding engine (PFE). The ingress system identifies flow classification indices for the multicast packet. Then, for each instance of multicasting, the ingress system sends a single copy of the multicast packet and the flow classification indices to an egress system of the PFE. The single copy of the multicast packet is buffered in a memory accessible by the egress system. The egress system prepares the multicast packet for transmission by for each flow classification index, identifying corresponding transform control instructions based on the flow classification index, reading the single copy of the multicast packet from the memory, causing the multicast packet to be transformed in accordance with the identified transform control instructions and outputting the transformed multicast packet.