Abstract:
A spectrometry apparatus includes a transmissive diffraction grating that transmits incident light. The transmissive diffraction grating has inclined surfaces made of a first dielectric material. The inclined surfaces are arranged so that they are inclined relative to a reference line. When the angle of incidence of light incident on the transmissive diffraction grating is measured with respect to the reference line and defined as an angle α, and the angle of diffraction of diffracted light is measured with respect to the reference line and defined as an angle β, the angle of incidence α is smaller than a Bragg angle θ defined with respect to the inclined surfaces, and the angle of diffraction β is greater than the Bragg angle θ.
Abstract:
A method for producing a fine structure includes: (a) forming a photosensitive film to cover a plurality of first convex portions formed in at least one surface of a substrate; (b) arranging liquid to cover the photosensitive film on the at least one surface of the substrate; (c) arranging a transparent parallel plate such that the parallel plate opposes the substrate via the liquid; (d) generating interference field by a laser beam to irradiate the interference field onto the photosensitive film via the parallel plate and the liquid; (e) removing the liquid and the parallel plate to develop the photosensitive film so as to form a photosensitive film pattern; and (f) etching the substrate using a mask of the photosensitive film pattern to form a plurality of fine convex portions smaller than the first convex portions on the at least one surface of the substrate. In the method, the liquid arranged at step (b) has a refractive index larger than 1 and equal to or smaller than a refractive index of the photosensitive film.
Abstract:
A sensor chip includes: a substrate that has a planar portion; and a diffraction grating, on which a target substance is placed, that includes a plurality of first protrusions periodically arranged in a period equal to or greater than 100 nm and equal to or less than 1000 nm in a first direction that is parallel to the planar portion, a plurality of base portions that is located between two of the first protrusions adjacent to each other and configures a base of the substrate, and a plurality of second protrusions that is formed on upper faces of the plurality of the first protrusions, has a surface formed from a metal, and is formed on the planar portion.
Abstract:
An optical element includes a diffraction function layer for diffracting at least a part of incident light and a grid disposed on a first surface of the diffraction function layer and including a plurality of wires. The first surface includes a plurality of first areas and a plurality of second areas. The first areas and the second areas are different from each other in a height from a second surface of the diffraction function layer as a surface opposite to the first surface. Steps are provided on boundaries between the first areas and the second areas.
Abstract:
In a laser processing apparatus including an ultra-short pulse laser a focusing optical system and processing a work by projecting a beam delivered through the focusing optical system on to the work, the focusing optical system has at least a pair of diffractive surface and a refractive surface, and chromatic aberration is corrected or chromatic aberration and pulse extension are corrected by making use of the diffractive dispersions due to and the diffractive surface the refractive dispersion due to of the refractive surface. With this arrangement, chromatic aberration is corrected or both chromatic aberration and pulse expansion are corrected in the processing with the ultra-short pulse laser and thereby improve the practical use and value of the processing by improving its accuray, qualiy and speed.
Abstract:
A laser machining apparatus for performing high-precision machining on a thin film deposited on a substrate, such as a liquid crystal panel. The apparatus includes a pulse laser generator for emitting a laser beam, a driver for driving the pulse laser generator, a phase grating for dividing the laser beam; a rotary stage for rotating the phase grating to control the direction of the beams illuminating an object, and a spatial filter (element 2101).
Abstract:
The invention provides an optical device with high light utilization efficiency that is capable of scribing patterns on curved surfaces, as well as flat surfaces, using a liquid crystal spatial light modulator. The invention offers an optical device with high light utilization efficiency and that is capable of three-dimensional formation of curved surfaces using a liquid crystal spatial light modulator. Additionally, the invention offers a widely applicable optical processing system that mounts these optical devices on robots. The invention includes at least a coherent light source, a liquid crystal spatial light modulator for controlling the wavefront of the light from the coherent light source, and a means that records the complex amplitude distribution on the liquid crystal spatial light modulator.
Abstract:
A detection apparatus includes: a first light source group having a plurality of light sources; a switch that switches the plurality of light sources to activate at least one of the light sources, a first optical system that introduces light from the activated light source into an electrical conductor of an optical device; and a detector that detects Raman scattering light from the light scattered or reflected by the electrical conductor. Each of the plurality of light sources of the first light source group is capable of radiating light having different polarization directions.
Abstract:
An optical device includes a projection group in which electrically conductive projections are arranged along a direction parallel to a virtual plane. The arrangement period of the projections in the projection group includes at least a first period and a second period different from the first period. The first period and the second period are shorter than a wavelength of an incident light.
Abstract:
A method of manufacturing a plated substrate using electroless plating to form a metal layer, the method including: forming a resin section having a predetermined pattern on a substrate; forming a catalyst layer on the resin section; and depositing a metal on the catalyst layer by immersing the substrate in an electroless plating solution to form a metal layer.