Abstract:
The present invention relates to a method of manufacturing a capacitive micro- machined transducer (100), in particular a CMUT, the method comprising depositing a first electrode layer (10) on a substrate (1), depositing a first dielectric film (20) on the first electrode layer (10), depositing a sacrificial layer (30) on the first dielectric film (20), the sacrificial layer (30) being removable for forming a cavity (35) of the transducer, depositing a second dielectric film (40) on the sacrificial layer (30), depositing a second electrode layer (50) on the second dielectric film (40), and patterning at least one of the deposited layers and films (10, 20, 30, 40, 50), wherein the depositing steps are performed by Atomic Layer Deposition. The present invention further relates to a capacitive micro-machined transducer (100), in particular a CMUT, manufactured by such method.
Abstract:
The present invention relates to a through-wafer via device (10) comprising a wafer (12) made of a wafer material and having a first wafer surface (12a) and a second wafer surface (12b) opposing the first wafer surface (12a). The through-wafer via device (10) further comprises a plurality of side by side first trenches (14) provided with a conductive material and extending from the first wafer surface (12a) into the wafer (12) such that a plurality of spacers (16) of the wafer material are formed between the first trenches (14). The through-wafer via device (10) further comprises a second trench (18) provided with the conductive material and extending from the second wafer surface (12b) into the wafer (12), the second trench (18) being connected to the first trenches (14). The through-wafer via device (10) further comprises a conductive layer (20) made of the conductive material and formed on the side of the first wafer surface (12a), the conductive material filling the first trenches (14) such that the first conductive layer (20) has a substantially planar and closed surface.
Abstract:
The present invention relates to an ultrasound transducer device comprising at least one cMUT cell (30) for transmitting and/or receiving ultrasound waves, the cMUT cell (30) comprising a cell membrane (30a) and a cavity (30b) underneath the cell membrane. The device further comprises a substrate (10) having a first side (10a) and a second side (10b), the at least one cMUT cell (30) arranged on the first side (10a) of the substrate (10). The substrate (10) comprises a substrate base layer (12) and a plurality of adjacent trenches (17a) extending into the substrate (10) in a direction orthogonal to the substrate sides (10a, 10b), wherein spacers (12a) are each formed between adjacent trenches (17a). The substrate (10) further comprises a connecting cavity (17b) which connects the trenches (17a) and which extends in a direction parallel to the substrate sides (10a, 10b), the trenches (17a) and the connecting cavity (17b) together forming a substrate cavity (17) in the substrate (10). The substrate (10) further comprises a substrate membrane (23) covering the substrate cavity (17). The substrate cavity (17) is located in a region of the substrate (10) underneath the cMUT cell (30). The present invention further relates to a method of manufacturing such ultrasound transducer device.
Abstract:
The present invention relates to a method of manufacturing a capacitive micro- machined transducer (100), in particular a CMUT, the method comprising depositing a first electrode layer (10) on a substrate (1), depositing a first dielectric film (20) on the first electrode layer (10), depositing a sacrificial layer (30) on the first dielectric film (20), the sacrificial layer (30) being removable for forming a cavity (35) of the transducer, depositing a second dielectric film (40) on the sacrificial layer (30), depositing a second electrode layer (50) on the second dielectric film (40), and patterning at least one of the deposited layers and films (10, 20, 30, 40, 50), wherein the depositing steps are performed by Atomic Layer Deposition. The present invention further relates to a capacitive micro-machined transducer (100), in particular a CMUT, manufactured by such method.
Abstract:
The present invention relates to an ultrasound transducer device comprising at least one cMUT cell (30) for transmitting and/or receiving ultrasound waves, the cMUT cell (30) comprising a cell membrane (30a) and a cavity (30b) underneath the cell membrane. The device further comprises a substrate (10) having a first side (10a) and a second side (10b), the at least one cMUT cell (30) arranged on the first side (10a) of the substrate (10). The substrate (10) comprises a substrate base layer (12) and a plurality of adjacent trenches (17a) extending into the substrate (10) in a direction orthogonal to the substratesides (10a, 10b), wherein spacers (12a) are each formed between adjacent trenches (17a). The substrate (10) further comprises a connecting cavity (17b) which connects the trenches (17a) and which extends in a direction parallel to the substrate sides (10a, 10b), the trenches (17a) and the connecting cavity (17b) together forming a substrate cavity (17) in the substrate (10). The substrate (10) further comprises a substrate membrane (23) covering the substrate cavity (17). The substrate cavity (17) is located in a region of the substrate (10) underneath the cMUT cell (30). The present invention further relates to a method of manufacturing such ultrasound transducer device.
Abstract:
An ultrasound system comprises a probe including an array of CMUT (capacitive micromachined ultrasound transducer) cells. Each cell comprises a substrate carrying a first electrode. The substrate is spatially separated from a flexible membrane including a second electrode. The flexible membrane comprises a mass element in a central region. The system also comprises a voltage supply adapted to, in a transmission mode provide, the respective electrodes with a bias voltage driving the CMUT cells into a collapsed state and a stimulus voltage having a set frequency for resonating the flexible membrane of the CMUT cells in said collapsed state The mass element of the CMUT cells forces the central region of the flexible membrane to remain in the collapsed state during said resonating. A pulse transmission method for such a system is also disclosed.
Abstract:
The present invention relates to a method of manufacturing a capacitive micro-machined transducer (100), in particular a CMUT, the method comprising depositing a first electrode layer (10) on a substrate (1), depositing a first dielectric film (20) on the first electrode layer (10), depositing a sacrificial layer (30) on the first dielectric film (20), the sacrificial layer (30) being removable for forming a cavity (35) of the transducer, depositing a second dielectric film (40) on the sacrificial layer (30), and depositing a second electrode layer (50) on the second dielectric film (40), wherein the first dielectric film (20) and/or the second dielectric film (40) comprises a first layer comprising an oxide, a second layer comprising a high-k material, and a third layer comprising an oxide, and wherein the depositing steps are performed by Atomic Layer Deposition. The present invention further relates to a capacitive micro-machined transducer (100), in particular a CMUT, manufactured by such method.
Abstract:
Disclosed is a method of manufacturing a device (1) comprising a plurality of micro-machined ultrasonic transducer cells (100) in a first region (10) on a substrate (30) and a plurality of interconnects (200) in a second region (20) on said substrate, each of said cells comprising a first electrode (110) separated by a cavity (130) from a second electrode (120) supported by a membrane (140), the method comprising forming a dielectric layer stack (11, 13, 15, 17) over the substrate, said dielectric layer stack defining the respective membranes of the micro-machined ultrasonic transducers in the first region; reducing the thickness of the dielectric layer stack in the second region by partially etching away the dielectric layer stack in the second region; etching a plurality of trenches (22) in the reduced thickness portion of the dielectric layer stack, each of said trenches exposing a conductive contact (210) in the second region; and filling said trenches with a conductive material. A device manufactured in accordance with this method and an apparatus including the device are also disclosed.
Abstract:
The present invention relates to a through-wafer via device (10) comprising a wafer (12) made of a wafer material and having a first wafer surface (12a) and a second wafer surface (12b) opposing the first wafer surface (12a). The through-wafer via device (10) further comprises a plurality of side by side first trenches (14) provided with a conductive material and extending from the first wafer surface (12a) into the wafer (12) such that a plurality of spacers (16) of the wafer material are formed between the first trenches (14). The through-wafer via device (10) further comprises a second trench (18) provided with the conductive material and extending from the second wafer surface (12b) into the wafer (12), the second trench (18) being connected to the first trenches (14). The through-wafer via device (10) further comprises a conductive layer (20) made of the conductive material and formed on the side of the first wafer surface (12a), the conductive material filling the first trenches (14) such that the first conductive layer (20) has a substantially planar and closed surface.
Abstract:
The present invention relates to an ultrasound transducer device comprising at least one cMUT cell (30) for transmitting and/or receiving ultrasound waves, the cMUT cell (30) comprising a cell membrane (30a) and a cavity (30b) underneath the cell membrane. The device further comprises a substrate (10) having a first side (10a) and a second side (10b), the at least one cMUT cell (30) arranged on the first side (10a) of the substrate (10). The substrate (10) comprises a substrate base layer (12) and a plurality of adjacent trenches (17a) extending into the substrate (10) in a direction orthogonal to the substratesides (10a, 10b), wherein spacers (12a) are each formed between adjacent trenches (17a). The substrate (10) further comprises a connecting cavity (17b) which connects the trenches (17a) and which extends in a direction parallel to the substrate sides (10a, 10b), the trenches (17a) and the connecting cavity (17b) together forming a substrate cavity (17) in the substrate (10). The substrate (10) further comprises a substrate membrane (23) covering the substrate cavity (17). The substrate cavity (17) is located in a region of the substrate (10) underneath the cMUT cell (30). The present invention further relates to a method of manufacturing such ultrasound transducer device.