Abstract:
The present invention relates to a method for regenerating an acid gas absorbent using Ag2O and Ag2CO3 mixed catalyst in an acid gas absorbent regeneration process in an acid gas capture process using an amine absorbent absorbing acid gas. Regeneration method of carbon dioxide absorbent using Ag2O and Ag2CO3 mixed catalyst of the present invention promotes the decomposition of carbon dioxide-bound carbamate from the carbon dioxide-absorbed absorbent of Ag2O and Ag2CO3 mixed catalysts through a novel catalytic reaction pathway to remove efficiently.
Abstract:
Disclosed are a compound including an oxalate, a carbon dioxide absorbent including the same, a method of preparing the carbon dioxide absorbent and a method of removing carbon dioxide, which may overcome issues of high recycling energy and low absorptivity of a conventional carbon dioxide absorbent to considerably reduce recycling energy and absorb a greater amount of carbon dioxide per unit absorbent, so that a size of a carbon dioxide absorption tower may be reduced and a less amount of recycling energy may be used, contributing to a substantial decrease in device manufacture costs and management costs.
Abstract:
The present invention provides a composite catalyst for diminishing energy demand during carbon dioxide absorbent regeneration and a method for producing the same. The present invention more particularly relates to a composite catalyst in which the surface or inside of activated carbon activated carbon used as a porous carrier is modified with oxides of one or more metals selected from a transition metal group consisting of Fe, Ni, and Mo, and a method for producing the composite catalyst. The activated carbon composite catalyst modified with a metal of the present invention is able to regenerate MEA (monoethanolamine) at a low temperature of 100° C. or below to diminish heat consumption, can decrease the heat duty by increasing the carbon dioxide desorption rate at a low temperature of 100° C. or below as well as acquire improved results through the relation between the BET surface area and the total acid sites, and can be usefully used as a technology capable of diminishing energy demand during energy-efficient CO2 absorbent regeneration at an economical cost since materials for production are inexpensive and abundant.
Abstract:
A carbon dioxide capturing apparatus and process uses a self-generating power means that uses carbon dioxide in combustion exhaust gas through the convergence of a carbon dioxide absorption tower. The capturing apparatus and process also relies on ionic generator associated technology using a concentration difference between seawater and freshwater. The capturing apparatus and process result in increased production efficiency for electric energy and reduced costs for a carbon dioxide capturing process by increasing a concentration difference using an absorbent liquid for absorbing carbon dioxide and, at the same time, electricity is obtained through carbon dioxide which is a greenhouse gas.
Abstract:
The present invention relates to an absorbent having improved carbon dioxide capture performance of an amine solution to which a reaction accelerator is added and a method for manufacturing the same, specifically relates to an absorbent in which an amine solution is mixed with a primary amine containing an aromatic ring as an active additive that can improve the absorption rate to improve both the absorption performance and the absorption rate, and a method for manufacturing the same. According to an embodiment of the present invention, it is possible to provide an absorbent, which exhibits excellent CO2 capture performance and has a higher absorption rate, a higher absorption capacity, and lower heat of absorption than an absorbent used in the conventional CO2 capture process by combining a tertiary amine with a primary amine and DEEA used as a tertiary alkanol amine can be manufactured from agricultural products or residues, which are renewable resources, so the final absorbent can be manufactured at low cost, and the present invention can be usefully used as a technology that can reduce energy demand in the field of CO2 capture and storage.
Abstract:
Disclosed is an adsorbent containing a metal oxide for adsorption of hydrogen sulfide in biogas, and a biogas purification system using the same.
Abstract:
An apparatus and process are provided for electricity production and high-efficiency trapping of carbon dioxide, using carbon dioxide within combustion exhaust gas and converging technologies associated with a carbon dioxide absorption tower and a generating device using ions which uses a difference in concentration of salinity between seawater and freshwater. It is expected that enhanced electrical energy production efficiency, an effect of reducing costs for the operation of a carbon dioxide trapping process, and electricity production from carbon dioxide, which is a greenhouse gas, can be simultaneously achieved by increasing the difference in concentration using an absorbent for absorbing carbon dioxide.