Abstract:
Disclosed is an adsorbent containing a metal oxide for adsorption of hydrogen sulfide in biogas, and a biogas purification system using the same.
Abstract:
Disclosed is an adsorbent containing a metal oxide for adsorption of hydrogen sulfide in biogas, and a biogas purification system using the same.
Abstract:
The present invention relates to a system and a method therefor capable of reducing the amount of heat which must be supplied to a regeneration tower for regenerating an absorbent in an acid gas capture system for such acid gas as carbon dioxide, and provides an acid gas capture system and an acid gas capture method capable of reducing energy consumption by using the heat from the system itself in an acid gas capture system. The system and method according to the present invention have the benefit of saving energy by lowering the thermal demand of a reboiler by using the low-temperature steam condensate generated in the capture system to cool the upper end of the regeneration tower and a steam generator and compressor.
Abstract:
The present invention relates to a system and a method therefor capable of reducing the amount of heat which must be supplied to a regeneration tower for regenerating an absorbent in an acid gas capture process for such acid gas as carbon dioxide and provides a low energy-type acid gas capture system and method using recirculation of an absorbent capable of reducing energy consumption by recirculating the absorbent, from which acid gas has been pre-separated, to an absorption tower before supplying the absorbent to the regeneration tower in an acid gas capture system.
Abstract:
Provided is a system and method in which a heat amount to be supplied to a regeneration tower for regenerating an absorbent may be lowered in an acidic gas capturing system for capturing acidic gas such as carbon dioxide. According to the system and method of capturing acidic gas, heat generated in the system itself is used to reduce energy consumption. According to the system and method of the inventive concept, heat exchange is conducted between low-temperature separated water generated in a capturing process and high-temperature processing gas to thereby reduce a cooling capacity of a condenser when condensing the processing gas, and also, a reboiler heat duty may be lowered by introducing the low-temperature separated water in a preheated state into the regeneration tower. In addition, the low-temperature separated water is used also in cooling a washing tower and a dilute solution through a heat integration process with respect to condensed water generated from the process itself, and thus, reduction of energy consumption of an absorbent regeneration process may be facilitated.
Abstract:
A method for regenerating an amine-based, acid gas absorbent using a mixed catalyst containing silver oxide and silver carbonate includes the steps of absorbing an acid gas into an acid gas absorbent having an amine group to obtain an acid gas-absorbed absorbent; and regenerating the amine-based, acid gas absorbent by adding a catalyst mixture containing silver oxide and silver carbonate to the acid gas-absorbed absorbent and by removing the acid gas at a temperature ranging from 40° C. to 86° C. When the amine-based acid gas absorbent is an acid gas absorbent solution and when the acid gas that is absorbed into the acid gas absorbent solution is carbon dioxide, the catalyst mixture efficiently promotes decomposition of carbon dioxide-bound carbamate in the acid gas absorbent solution that absorbs the carbon dioxide through a novel catalytic reaction pathway.
Abstract:
The present invention relates to an acid gas capture system and method which can reduce the energy consumption by using the heat from the system itself of an acid gas capture system. The system and method according to the present invention causes heat exchange to occur between an absorbent discharged from the upper part of an absorption tower of the capture system and a mixed gas comprising an acid gas, and a portion of an absorbent solution which has absorbed the acid gas discharged from the lower part of the absorption tower, and additionally, the remaining absorbent solution excluding said portion thereof undergoes heat exchange with the regenerated high-temperature absorbent solution discharged from the reboiler to preheat the absorbent solution supplied to the regeneration tower, thereby reducing the thermal energy required by same.
Abstract:
Disclosed is a novel adsorbent having excellent adsorption durability and high adsorption efficiency while having improved durability, thereby improving a carbon dioxide (CO2) separation process. A mesoporous cellular foam impregnated with an iron (Fe)-substituted heteropolyacid includes a mesoporous cellular foam support and an Fe-substituted heteropolyacid, and the mesoporous cellular foam impregnated with an Fe-substituted heteropolyacid has superior CO2 adsorption performance and exhibits excellent reproduction performance even after CO2 adsorption and desorption are performed several times through temperature changes, thereby enabling efficient and economical CO2 separation.
Abstract:
Disclosed is a system and method of separating and collecting acid gas such as carbon dioxide in which the energy consumption in a stripping column for regenerating an absorbent may be reduced. In the system and method, the energy consumption may be reduced using heat generated during the acidic gas separation and collection processes. In the system and method, a low-temperature condensate from a condenser may be preheated by heat exchange with a high-temperature processed gas, and then supplied into the stripping column, thereby to reduce the heat duty of a reboiler and the energy consumption in the condenser for cooling. A partial flow of a carbon diode-absorbed absorbent from an absorber column may be preheated by heat exchange with high-temperature processed gas from an upper portion of the stripping column, and then supplied into the stripping column, thereby to further reduce the heat duty of the reboiler.