Abstract:
Provided herein are systems and methods for providing reliable control of an unmanned aerial vehicle (UAV). A system for providing reliable control of the UAV can include a computing device that can execute reliable and unreliable programs. The unreliable programs can be isolated from the reliable programs by virtue of executing one or more of the programs in a virtual machine client. The UAV can initiate a recovery action when one or more of the unreliable programs fail. The recovery action can be performed without input from one or more of the unreliable programs.
Abstract:
Provided herein are systems and method for autonomously or semi-autonomously landing an unmanned aerial vehicle (UAV) on a landing pad. The landing pad can include features configured to correct misalignment of the UAV on the landing pad. The landing pad can additionally include one or more markers than can be identified by the UAV to aid the UAV in locating the landing pad and determining the location of the UAV relative to the landing pad.
Abstract:
Provided herein are systems and method for autonomously or semi-autonomously landing an unmanned aerial vehicle (UAV) on a landing pad. The landing pad can include features configured to correct misalignment of the UAV on the landing pad. The landing pad can additionally include one or more markers than can be identified by the UAV to aid the UAV in locating the landing pad and determining the location of the UAV relative to the landing pad.
Abstract:
A data communication system for unmanned aerial vehicles includes communication links comprising a low-throughput capacity communication link and a high-throughput capacity communication link. The data communication system can also include a base station, to which the unmanned aerial vehicles send aerial data, and from which the unmanned aerial vehicles receive command signals. As the unmanned aerial vehicles perform missions in an open, distant airspace, the unmanned aerial vehicles can gather large volume data such as aerial images or videos. The data communication system allows opportunistic transfer of the gathered aerial data from the unmanned aerial vehicles to the base station when a high-throughput communication link is established. The data communication system allows constant communication between the base station and the unmanned aerial vehicles to send and receive low volume, operation-critical data, such as commands or on-going flight path changes, using a low-throughput communication link.
Abstract:
A data communication system for unmanned aerial vehicles includes communication links comprising a low-throughput capacity communication link and a high-throughput capacity communication link. The data communication system can also include a base station, to which the unmanned aerial vehicles send aerial data, and from which the unmanned aerial vehicles receive command signals. As the unmanned aerial vehicles perform missions in an open, distant airspace, the unmanned aerial vehicles can gather large volume data such as aerial images or videos. The data communication system allows opportunistic transfer of the gathered aerial data from the unmanned aerial vehicles to the base station when a high-throughput communication link is established. The data communication system allows constant communication between the base station and the unmanned aerial vehicles to send and receive low volume, operation-critical data, such as commands or on-going flight path changes, using a low-throughput communication link.
Abstract:
Provided herein are systems and methods for providing reliable control of an unmanned aerial vehicle (UAV). A system for providing reliable control of the UAV can include a computing device that can execute reliable and unreliable programs. The unreliable programs can be isolated from the reliable programs by virtue of executing one or more of the programs in a virtual machine client. The UAV can initiate a recovery action when one or more of the unreliable programs fail. The recovery action can be performed without input from one or more of the unreliable programs.
Abstract:
Provided herein are systems and methods for providing reliable control of an unmanned aerial vehicle (UAV). A system for providing reliable control of the UAV can include a computing device that can execute reliable and unreliable programs. The unreliable programs can be isolated from the reliable programs by virtue of executing one or more of the programs in a virtual machine client. The UAV can initiate a recovery action when one or more of the unreliable programs fail. The recovery action can be performed without input from one or more of the unreliable programs.
Abstract:
Provided herein are systems and methods for providing reliable control of an unmanned aerial vehicle (UAV). A system for providing reliable control of the UAV can include a computing device that can execute reliable and unreliable programs. The unreliable programs can be isolated from the reliable programs by virtue of executing one or more of the programs in a virtual machine client. The UAV can initiate a recovery action when one or more of the unreliable programs fail. The recovery action can be performed without input from one or more of the unreliable programs.