Abstract:
A two-stage reactor/process is disclosed for the conversion of solid particulate biomass material and includes: a first stage, in which solid particulate biomass material is pyrolyzed to primary reaction products, and a second stage in which the primary reaction products are catalytically converted in a second stage which is operated at a temperature higher than that of the first stage.
Abstract:
A metal contaminated spent catalyst or regenerated catalyst from a biomass conversion unit may be subjected to an ammonium wash in order to remove potassium. The ammonium wash may include ammonium sulfate, ammonium nitrate, ammonium hydroxide, ammonium acetate, ammonium phosphates, and mixtures thereof. Acidity and catalytic activity of the biomass conversion catalyst is restored by the removal of potassium contaminants.
Abstract:
A metal contaminated spent catalyst or regenerated catalyst from a biomass conversion unit may be subjected to an ammonium wash in order to remove potassium. The ammonium wash may include ammonium sulfate, ammonium nitrate, ammonium hydroxide, ammonium acetate, ammonium phosphates, and mixtures thereof. Acidity and catalytic activity of the biomass conversion catalyst is restored by the removal of potassium contaminants.
Abstract:
Disclosed are catalyst compositions including zeolite and silica components, methods of making, and processes of using in the thermo-catalytic conversion of biomass. Such disclosed methods of making include treating the zeolite with phosphorous during formation of the catalyst rather than prior to or after catalyst formation.
Abstract:
Disclosed are catalyst compositions including zeolite and silica components, methods of making, and processes of using in the thermo-catalytic conversion of biomass. Such disclosed methods of making include: i) spray drying of the catalyst precursor slurry at a pH below 1, or ii) the removal of ions such as sodium from the binder material prior to spray drying the catalyst precursor slurry at a pH below 2.7, or iii) spray drying the catalyst precursor including a pore regulating agent followed by steam treating, or iv) some combination of i), ii) and iii).
Abstract:
Catalyst compositions comprising a phosphorous-promoted ZSM-5 component and a silica-containing binder, and methods for making and using same, are disclosed. More, specifically, processes for making a catalyst for biomass conversion are provided. The process includes: treating a ZSM-5 zeolite with a phosphorous-containing compound to form a phosphorous-promoted ZSM-5 component; preparing a slurry comprising the phosphorous-promoted ZSM-5 component and a silica-containing binder; and shaping the slurry into shaped bodes. Such catalysts can be used for the Thermocatalytic conversion of particulate biomass to liquid products such as bio-oil, resulting in higher bio-oil yields and lower coke than conventional catalysts.
Abstract:
Catalyst compositions comprising a phosphorous-promoted ZSM-5 component and a silica-containing binder, and methods for making and using same, are disclosed. More, specifically, processes for making a catalyst for biomass conversion are provided. The process includes: treating a ZSM-5 zeolite with a phosphorous-containing compound to form a phosphorous-promoted ZSM-5 component; preparing a slurry comprising the phosphorous-promoted ZSM-5 component and a silica-containing binder; and shaping the slurry into shaped bodes. Such catalysts can be used for the Thermocatalytic conversion of particulate biomass to liquid products such as bio-oil, resulting in higher bio-oil yields and lower coke than conventional catalysts.
Abstract:
Spent catalyst or regenerated catalyst from a biomass conversion unit may be rejuvenated by treating at least a portion of the spent catalyst or regenerated catalyst with a treatment acid, the treatment acid comprising an inorganic acid or an organic acid or a mixture thereof.
Abstract:
Disclosed are methods of making, and processes of using phosphorous-promoted zeolite-containing catalysts in the conversion of hydrocarbonaceous materials such as hydrocarbons and biomass. Such disclosed methods of making include: spray drying of the catalyst precursor slurry followed by phosphorous promotion of the resulting spray dried material.