Abstract:
A structure includes a barrier layer which can include a silicon aluminum oxide, and a transparent conductive oxide layer which can include a layer of cadmium and tin.
Abstract:
The invention provides low-emissivity coatings that are highly reflective of infrared radiation. The coating includes three infrared-reflection film regions, which may each comprise silver.
Abstract:
The invention provides low-emissivity coatings that are highly reflective of infrared radiation. The coating includes three infrared-reflection film regions, which may each comprise silver.
Abstract:
Methods and equipment are provided for processing sheet-like substrates. The methods and equipment are useful for depositing coatings on both major surfaces of a sheet-like substrate. Also provided are substrates with coatings on both major surfaces. Preferably, the coatings on the opposed major surfaces of a substrate have different structures, yet share a common structural sequence of at least two film regions, and in some embodiments at least three film regions.
Abstract:
A method and apparatus for coating two sides of a single pane of glass or other substrate in a single pass through a coating apparatus. A sputtering line is provided, this line comprising a series of sputtering chambers. At least one of the chambers comprises a downward sputtering chamber having an upper target. At least one of the chambers comprises an upward sputtering chamber having a lower target. In some embodiments, the upper and lower targets are rotary targets. The coating apparatus advantageously has a plurality of transport rollers for conveying the substrate along the sputtering line. In certain embodiments, a majority of the chambers of the sputtering line are downward sputtering chambers each having only an upper target with no lower target.
Abstract:
A corrosion-resistant low-emissivity coating is provided. The low-emissivity coating comprises, in sequence outwardly, a corrosion-resistant inner infrared-reflective layer, a transparent dielectric middle coat, and an outer infrared-reflective layer. The outer infrared-reflective layer consists essentially of silver and the corrosion-resistant inner infrared-reflective layer has a different composition than the outer infrared-reflective layer. Also provided are methods for depositing coatings of this nature, as well as substrates bearing these coatings.
Abstract:
The invention provides a substrate bearing a low-emissivity coating. The low-emissivity coating comprises at least one graded film region. In certain embodiments, at least one graded film region is provided between the two infrared-reflective layers of a double-type low-emissivity coating. The graded film region has a substantially continuously decreasing concentration of a first dielectric material and a substantially continuously increasing concentration of a second dielectric material. Also provided are methods of depositing such low-emissivity coatings and substrates bearing these coatings.
Abstract:
Methods and equipment for depositing films. In certain embodiments, there is provided a deposition chamber having a substrate-coating region and an electrode-cleaning region. In these embodiments, an electrode is positioned in the deposition chamber and has an interior cavity in which first and second magnet systems are disposed. In certain embodiments, there is provided a method for depositing films onto substrates using a deposition chamber of the described nature. The invention also provides electrode assemblies for film-deposition equipment. In certain embodiments, the electrode assembly comprises a rotatable electrode (optionally having an outer coating of carbon or the like) having an interior cavity, with stationary first and second generally-opposed magnet systems being disposed in this interior cavity.
Abstract:
The invention provides certain embodiments that involve sputtering techniques for applying a mixed oxide film comprising silica and titania. In these embodiments, the techniques involve sputtering at least two targets in a common chamber (e.g., in a shared gaseous atmosphere). A first of these targets includes silicon, while a second of the targets includes titanium. Further, the invention provides embodiments involving a substrate bearing a hydrophilic coating, which can be deposited by sputtering or any other suitable thin film deposition technique. The invention also provides techniques and apparatuses useful for depositing a wide variety of coating types. For example, the invention provides thin film deposition technologies in which sputtering apparatuses or other thin film deposition apparatuses are employed.