Abstract:
Embodiments described herein relate generally to systems and methods for creating durable lubricious surfaces (DLS) via interfacial modification. The DLS can be prepared via a combination of a solid, a liquid, and an additive that modifies the interface between the DLS and a contact liquid, resulting in an interfacial layer that acts as a lubricant and/or protective coating between the DLS and the contact liquid. The lubricating effect created between the additive and the contact liquid results in enhanced slipperiness, as well as the protective properties that can help with durability of the DLS.
Abstract:
Embodiments described herein relate generally to systems and methods for creating durable lubricious surfaces (DLS) via interfacial modification. The DLS can be prepared via a combination of a solid, a liquid, and an additive that modifies the interface between the DLS and a contact liquid, resulting in an interfacial layer that acts as a lubricant and/or protective coating between the DLS and the contact liquid. The lubricating effect created between the additive and the contact liquid results in enhanced slipperiness, as well as the protective properties that can help with durability of the DLS.
Abstract:
Embodiments described herein relate to lubricating liquids and the application thereof to ostomy pouches. In some embodiments, an apparatus can include a container having an inner surface, and a lubricating liquid coated on the inner surface, between about 50 wt % and about 80 wt % of a primary lubricating oil, between about 0.01 wt % and about 2 wt % of an antioxidant, between about 0.1 wt % and about 10 wt % of a polymer, and between about 1 wt % and about 50 wt % of a secondary liquid, the secondary liquid configured to improve the solubility of the polymer in the primary lubricating oil. In some embodiments, the container includes an ostomy pouch. In some embodiments, the apparatus further includes a contact product disposed in the container and in contact with the lubricating liquid. In some embodiments, the contact product includes stool.
Abstract:
In some embodiments, a method of producing a liquid-impregnated surface includes forming a solid particle suspension including a plurality of solid particles with an average dimension of between about 5 nm and about 200 μm. The solid particle suspension is applied to a surface by spray-depositing the solid particle suspension onto the surface. An impregnating liquid is also applied to the surface. The plurality of solid particles and the impregnating liquid collectively form a liquid-impregnated surface. The impregnating liquid can be applied after the solid particle suspension is applied, or the solid particle suspension can include the impregnating liquid, such that the solid particle suspension and the impregnating liquid are concurrently spray-deposited onto the surface.
Abstract:
Embodiments described herein relate generally to systems and methods for creating durable lubricious surfaces (DLS) via interfacial modification. The DLS can be prepared via a combination of a solid, a liquid, and an additive that modifies the interface between the DLS and a contact liquid, resulting in an interfacial layer that acts as a lubricant and/or protective coating between the DLS and the contact liquid. The lubricating effect created between the additive and the contact liquid results in enhanced slipperiness, as well as the protective properties that can help with durability of the DLS.
Abstract:
Embodiments described herein relate to articles and methods for forming liquid surface films on the interior surfaces of containers for holding one or more products comprising one or more Bingham plastic materials. Bingham plastic materials behave as a solid under no or low shear stress, and behave as viscous liquids when an applied shear stress exceeds a yield stress. In some embodiments, a container for containing a product includes an interior surface and a liquid disposed on the interior surface. Before introduction of a product into a container, the liquid may be surrounded by air. The liquid-air interface in contact with the interior surface makes a contact angle, θos(a), with respect to the interior surface of the container, of about 0°. After a product has been introduced to the container, the liquid is at least partially covered by the product. The liquid-product interface in contact with the interior surface, makes a contact angle, θos(p), with respect to the interior surface, of less about 60°. The subscript “o” denotes the liquid, subscript “s” denotes the interior surface, subscript “a” denotes air, and subscript “p” denotes a product. In some embodiments, the contact angle θos(p) can be less than about 50°, less than about 40°, or less than about 30°.
Abstract:
In some embodiments, a method of producing a liquid-impregnated surface includes forming a solid particle suspension including a plurality of solid particles with an average dimension of between about 5 nm and about 200 μm. The solid particle suspension is applied to a surface by spray-depositing the solid particle suspension onto the surface. An impregnating liquid is also applied to the surface. The plurality of solid particles and the impregnating liquid collectively form a liquid-impregnated surface. The impregnating liquid can be applied after the solid particle suspension is applied, or the solid particle suspension can include the impregnating liquid, such that the solid particle suspension and the impregnating liquid are concurrently spray-deposited onto the surface.
Abstract:
Embodiments described herein relate generally to containers having liquid-impregnated surfaces disposed on their interior surfaces. The liquid-impregnated surfaces may compose an arrangement of solid and/or semi-solid features, defining one or more interstitial regions therebetween, and an impregnating liquid preferentially wetted to those regions. The containers may be designed to contain a product that is intended for human or animal consumption. The solid and/or semi-solid features and the impregnating liquid collectively define a secondary surface (e.g., substantially parallel to the interior surface on which the liquid-impregnated surfaces are disposed) and may include materials which are non-toxic. In particular, non-toxic liquid-impregnated surfaces of the disclosure may be configured for use in food, drugs, health and/or beauty product applications.
Abstract:
Embodiments described herein relate generally to systems and methods for creating durable lubricious surfaces (DLS) via interfacial modification. The DLS can be prepared via a combination of a solid, a liquid, and an additive that modifies the interface between the DLS and a contact liquid, resulting in an interfacial layer that acts as a lubricant and/or protective coating between the DLS and the contact liquid. The lubricating effect created between the additive and the contact liquid results in enhanced slipperiness, as well as the protective properties that can help with durability of the DLS.
Abstract:
Embodiments described herein relate generally to systems and methods for creating durable lubricious surfaces (DLS) via interfacial modification. The DLS can be prepared via a combination of a solid, a liquid, and an additive that modifies the interface between the DLS and a contact liquid, resulting in an interfacial layer that acts as a lubricant and/or protective coating between the DLS and the contact liquid. The lubricating effect created between the additive and the contact liquid results in enhanced slipperiness, as well as the protective properties that can help with durability of the DLS.