Abstract:
An particle can include a first sheet comprising a layer including a first material, wherein the first sheet includes a first outer surface and a first inner surface; and a second sheet comprising a layer including a second material, where the second sheet includes a second outer surface and a second inner surface, wherein the first sheet and the second sheet form a space, the space is encapsulated by the first sheet and the second sheet.
Abstract:
The present disclosure is directed to materials, devices, and methods for resonant ambient thermal energy harvesting. Thermal energy can be harvested using thermoelectric resonators that capture and store ambient thermal fluctuations and convert the fluctuations to energy. The thermal resonators can include heat engines disposed between masses of varying sizes or diodes. The masses or diodes can be made of high and ultra-high effusivity materials to transfer thermal energy through the resonator and optimize power output. The masses or diodes of the resonator can be tuned to the dominant frequency of the temperature waveform to maximize the amount of energy being converted. The resonators can be added to existing structures to supply or generate power, and, in some embodiments, the structures themselves can be a mass of the thermal resonator. Methods for constructing and/or using such devices are also provided, as are methods for formulating ultra-high effusivity materials.
Abstract:
An imaging probe can include a photoluminescent carbon nanostructure configured to emit a wavelength of light detectable through living tissue, and a targeting moiety including a first binding partner configured to interact with a second binding partner.
Abstract:
Corona Phase Molecular Recognition (CoPhMoRe) utilizing a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte can be used for macromolecular analytes, including proteins. A variant of a CoPhMoRe screening procedure of single walled carbon nanotubes (SWCNT) can be used against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen and insulin, respectively, with high selectivity.
Abstract:
A living plant can function as self-powered auto-samplers and preconcentrators of an analyte within ambient groundwater, detectors of the analyte contained therein. For example, a pair of near infrared (IR) fluorescent sensors embedded within the mesophyll of the plant leaf can be used as detectors of the nitroaromatic molecules, with the first IR channel engineered through CoPhMoRe to recognize analyte via an IR fluorescent emission and the second IR channel including a functionalized nanostructure that acts as an invariant reference signal.
Abstract:
The present disclosure is directed to materials, devices, and methods for resonant ambient thermal energy harvesting. Thermal energy can be harvested using thermoelectric resonators that capture and store ambient thermal fluctuations and convert the fluctuations to energy. The resonators can include non-linear heat transfer elements, such as thermal diodes, to enhance their performance. Incorporation of thermal diodes can allow for a dynamic rectification of temperature fluctuations into a single polarity temperature difference across a heat engine for power extraction, as compared to the dual polarity nature of the output voltage of linear thermal resonators, which typically necessitates electrical rectification to be routed to an entity for energy storage. In some embodiments, the thermal diode can be applied to transient energy harvesting to construct thermal diode bridges. Methods for constructing such devices, and using such devices, are also provided.
Abstract:
A nanosensor for detecting an analyte can include a substrate, a photoluminescent nanostructure, and a polymer interacting with the photoluminescent nanostructure. The nanosensor can be used in in vivo for biomedical applications.
Abstract:
A composition can include a complex, where the complex includes a photoluminescent nanostructure and a polymer free from selective binding to an analyte, the polymer adsorbed on the photoluminescent nanostructure, and a selective binding site associated with the complex.